[1] Íõ Ȫ,Âí Ρ,ÕÅ Ôó,µÈ.¶³ÈÚÑ»·¶Ô»ÆÍÁ¶þ´ÎʪÏÝÌØÐÔµÄÓ°ÏìÑо¿[J].±ù´¨¶³ÍÁ,2013,35(2):376-382.
WANG Quan, MA Wei, ZHANG Ze, et al. Research on the secondary collapse properties of loess under freeze-thaw cycle[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 376-382.
[2]ÁõĽå·,´Þ×ÔÖÎ,ËÎ öÎ.ÁòËáÄÆ-¸Éʪ-¶³ÈÚ¹²Í¬×÷ÓöÔË®ÄàÍÁÐÔÄܵÄÓ°Ïì[J].¿ÆÑ§¼¼ÊõÓ빤³Ì,2022,22(29):12977-12984.
LIU Muchen, CUI Zizhi, SONG Xin. Effects of sodium sulfate on properties of cement-soil under dry-wet and freeze-thaw cycles[J]. Science Technology and Engineering, 2022, 22(29): 12977-12984.
[3]ÅÓÎĄ̈,ÉêÏò¶«.¶³ÈÚÑ»·¶ÔË®ÄàÍÁÁ¦Ñ§ÐÔÄܵÄÓ°Ïì[J].¹«Â·,2012,57(9):30-32.
PANG Wentai, SHEN Xiangdong. Effect of freeze-thaw cycle on mechanical properties of cement soil[J]. Highway, 2012, 57(9): 30-32.
[4]ÉÛ Àþ,ÀîÅåÇà,Íõ±ò½Ü.¶³ÈÚÑ»·¶Ô¼î¼¤·¢¸ß¯¿óÔü΢·Û¼Ó¹ÌÈíÍÁÇ¿¶ÈµÄÓ°Ïì[J].¹«Â·½»Í¨¿Æ¼¼,2022,39(1):40-47.
SHAO Li, LI Peiqing, WANG Binjie. Influence of freeze-thaw cycle on strength of soft soil solidified by alkali-activated ground granulated blast furnace slag[J]. Journal of Highway and Transportation Research and Development, 2022, 39(1): 40-47.
[5]ÕÅÊçÁá,Äß ¾²,Âí ÀÙ,µÈ.¶³ÈÚÑ»·×÷ÓúóË®ÄàÍÁ¼°·Ûú»ÒÍÁµÄÁ¦Ñ§ÐÔÄÜÊÔÑéÑо¿[J].Ë®×ÊÔ´ÓëË®¹¤³Ìѧ±¨,2018,29(4):196-201.
ZHANG Shuling, NI Jing, MA Lei, et al. Experimental study on mechanical properties of cement soils and fly ash soils after freeze-thaw cycling[J]. Journal of Water Resources and Water Engineering, 2018, 29(4): 196-201.
[6]ÍõÌìÁÁ,Áõ½¨À¤,ÌïÑÇ»¤.¶³ÈÚ×÷ÓÃÏÂË®Ä༰ʯ»Ò¸ÄÁ¼ÍÁ¾²Á¦ÌØÐÔÑо¿[J].ÑÒÍÁÁ¦Ñ§,2011,32(1):193-198.
WANG Tianliang, LIU Jiankun, TIAN Yahu. Static properties of cement- and lime-modified soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2011, 32(1): 193-198.
[7]¹ù´æ¸ë.¸ÄÁ¼»ÆÍÁÇ¿¶ÈÌØÐÔµÄÊÒÄÚ¶³ÈÚÑ»·ÊÔÑéÑо¿[J].Öйúм¼ÊõвúÆ·,2012(4):97.
GUO Cunge. Experimental study on improving the strength characteristics of loess by indoor freeze-thaw cycle[J]. China New Technologies and Products, 2012(4): 97.
[8]WANG F T, LI K Q, LIU Y. Optimal water-cement ratio of cement-stabilized soil[J]. Construction and Building Materials, 2022, 320: 126211.
[9]DONG X X, BAO X H, CUI H Z, et al. Macro-porosity and skeleton of a cement-gravel-treated granite residual soil for subgrade from CT scanning[J]. Construction and Building Materials, 2023, 371: 130703.
[10]¼Öº£Áº,Ïî ΰ,Ì· Áú,µÈ.ɰÑÒ¶³ÈÚËðÉË»úÖÆµÄÀíÂÛ·ÖÎöºÍÊÔÑéÑéÖ¤[J].ÑÒʯÁ¦Ñ§Ó빤³Ìѧ±¨,2016,35(5):879-895.
JIA Hailiang, XIANG Wei, TAN Long, et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 879-895.
[11]ºú½¨ÁÖ,¸ßÅô·É,ÕÅÓñÁú.¶³ÈÚÑ»·×÷ÓÃÏÂÌúβ¿óɰˮÄàÍÁÇ¿¶È¼°±äÐÎÌØÐÔÑо¿[J].ÉÁÖ¹¤³Ì,2022,38(5):121-127,136.
HU Jianlin, GAO Pengfei, ZHANG Yulong. Study on strength and deformation characteristics of cement soil of iron tailing sand under freeze-thaw cycles[J]. Forest Engineering, 2022, 38(5): 121-127, 136.
[12]ºÂÑÅ·Ò,ΠºÆ,·®«˜¸ó,µÈ.¶³ÈÚÑ»·¶Ô³àÄà-¸ÖÔü¸ÄÐÔË®ÄàÍÁÇ¿¶ÈµÄÊÔÑéÑо¿[J].Ì«ÔÀí¹¤´óѧѧ±¨,2021,52(1):117-121.
HAO Yafen, WEN Hao, FAN Peige, et al. Experimental study of freeze-thaw cycle on strength of cemented soil modified with red mud-steel slag[J]. Journal of Taiyuan University of Technology, 2021, 52(1): 117-121.
[13]YARBAÿðþ‰CI N, KALKAN E, AKBULUT S. Modification of the geotechnical properties,as influenced by freeze-thaw,of granular soils with waste additives[J]. Cold Regions Science and Technology, 2007, 48(1): 44-54.
[14]SAYGILI A, DAYAN M. Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers[J]. Cold Regions Science and Technology, 2019, 161: 107-114.
[15]CHAI M T, ZHANG H, ZHANG J M, et al. Effect of cement additives on unconfined compressive strength of warm and ice-rich frozen soil[J]. Construction and Building Materials, 2017, 149: 861-868.
[16]ͨÓùèËáÑÎË®Äà:GB 175¡ª2007[S].±±¾©:Öйú±ê×¼³ö°æÉç,2007.
Common portland cement: GB 175¡ª2007[S]. Beijing: Standards Press of China, 2007.
[17]¹«Â·Â·Ãæ»ù²ãÊ©¹¤¼¼ÊõϸÔò:JTG/T F20¡ª2015[S].±±¾©:ÈËÃñ½»Í¨³ö°æÉç,2015.
Technical guidelines for construction of highway roadbases: JTG/T F20¡ª2015[S]. Beijing: China Communications Press, 2015.
[18]¶à¾§¹èÓùè·Û:YS/T 724¡ª2016[S]. ±±¾©:Öйú±ê×¼³ö°æÉç,2016.
Silicon powder for polycrystalline silicon: YS/T 724¡ª2016[S]. Beijing: Standards Press of China, 2016.
[19]¹«Â·ÍÁ¹¤ÊÔÑ鹿³Ì:JTG 3430¡ª2020[S].±±¾©:ÈËÃñ½»Í¨³ö°æÉç, 2020.
Test methods of soils for highway engineering: JTG 3430¡ª2020[S]. Beijing: China Communications Press, 2020.
[20]¹«Â·¹¤³ÌÎÞ»ú½áºÏÁÏÎȶ¨²ÄÁÏÊÔÑ鹿³Ì:JTG E51¡ª2009[S].±±¾©:ÈËÃñ½»Í¨³ö°æÉç,2009.
Test methods of materials stabilized with inorganic binders for highway engineering: JTG E51¡ª2009[S]. Beijing: China Communications Press, 2009.
[21]WANG L, JIN M M, WU Y H, et al. Hydration,shrinkage, pore structure and fractal dimension of silica fume modified low heat portland cement-based materials[J]. Construction and Building Materials, 2021, 272: 121952.
[22]MOUSAVI S E. Utilization of silica fume to maximize the filler and pozzolanic effects of stabilized soil with cement[J]. Geotechnical and Geological Engineering, 2018, 36(1): 77-87.
[23]JONGPRADIST P, JUMLONGRACH N, YOUWAI S, et al. Influence of fly ash on unconfined compressive strength of cement-admixed clay at high water content[J]. Journal of Materials in Civil Engineering, 2010, 22(1): 49-58.
[24]²ÜÖǹú,Õ¶¨ÎÄ.Ë®ÄàÍÁÎÞ²àÏÞ¿¹Ñ¹Ç¿¶È±íÕ÷²ÎÊýÑо¿[J].ÑÒʯÁ¦Ñ§Ó빤³Ìѧ±¨,2015,34(Ôö1):3446-3454.
CAO Zhiguo, ZHANG Dingwen. Key parameters controlling unconfined compressive strength of soil-cement mixtures[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3446-3454.
[25]ÀîÓÀ»Ô,º«º£Ï¼,ÃÏÀÖÀÖ.Ö£ÖÝ·ÛÍÁË®ÄàÍÁÎÞ²àÏÞ¿¹Ñ¹Ç¿¶ÈÊÔÑéÑо¿[J].¹«Â·,2019,64(5):209-213.
LI Yonghui, HAN Haixia, MENG Lele. Experimental study on unconfined compressive strength of silt cement-soil in Zhengzhou[J]. Highway, 2019, 64(5): 209-213.