|Table of Contents|

Fatigue performance analysis of tensile flange welds in beam-column joints of three-dimensional garages(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年04期
Page:
83-91
Research Field:
建筑结构
Publishing date:

Info

Title:
Fatigue performance analysis of tensile flange welds in beam-column joints of three-dimensional garages
Author(s):
PAN Kang HE Yongjun
(College of Civil Engineering, Hunan University, Changsha 410082, Hunan, China)
Keywords:
three-dimensional garage high-cycle fatigue dload subroutine vehicle movement load weld form carriage form equivalent structural stress method
PACS:
TU248.3
DOI:
10.19815/j.jace.2024.01024
Abstract:
To study the high-cycle fatigue issues arising from the frequent movement and access of vehicles in service for the new steel structure three-dimensional garage, the overall steel frame beam unit model and the beam-column node solid unit model were established successively. The dload subroutine was used to simulate the uniform motion of vehicles along the guide beam. The equivalent structural stress method was employed to analyze the fatigue characteristics of local welds. The effects of weld form, root gap and bevel angle on the structural fatigue life were investigated. The fatigue damage and service life of double-carriage and triple-carriage form three-dimensional garages were calculated. The results show that the fatigue control position of the steel structure three-dimensional garage is the beam-column node near the rear wheel on the bottom layer, where tensile flange butt welds are located. The intersection area of the beam flange weld and the weld hole belongs to a highly stress-concentrated area. The stress distribution is more uniform and the fatigue performance is better for the double-slanting groove full penetration weld connection compared to the single-slanting groove full penetration weld structure. The fatigue life of the weld decreases with the increase of the root gap and bevel angle, and the root gap has the dominant influence. The load conditions of the triple-carriage form of three-dimensional garage are more complex, and special attention needs to be paid to its fatigue performance during engineering construction. The equivalent structural stress method evaluates fatigue using only one main fatigue strength-fatigue life curve, which is insensitive to the grid and is suitable for fatigue life assessment of large and important structures.

References:

[1] SIEBER L, URBANEK R, B?R J. Crack-detection in old riveted steel bridge structures[J]. Procedia Structural Integrity, 2019, 17: 339-346.
[2]ZHANG H J, XU S H, NIE B, et al. Effect of corrosion on the fracture properties of steel plates[J]. Construction and Building Materials, 2019, 225: 1202-1213.
[3]刘希月,王元清,石永久,等.高强度钢框架梁柱节点低周疲劳断裂性能试验研究[J].建筑结构学报,2018,39(2):28-36.
LIU Xiyue, WANG Yuanqing, SHI Yongjiu, et al. Experimental study on low-cycle fatigue fracture behavior of high strength steel beam-to-column connection[J]. Journal of Building Structures, 2018, 39(2): 28-36.
[4]罗云蓉,王清远,付 磊,等.地震频率对Q235钢结构材料超低周疲劳行为的影响[J].实验力学,2018,33(5):743-750.
LUO Yunrong, WANG Qingyuan, FU Lei, et al. On the effect of seismic frequency on extremely low cycle fatigue behaviors of Q235 steel structure material[J]. Journal of Experimental Mechanics, 2018, 33(5): 743-750.
[5]方 钊,李爱群,李万润,等.高层钢框架支撑结构多尺度风致疲劳分析方法[J].东南大学学报(自然科学版),2017,47(1):137-141.
FANG Zhao, LI Aiqun, LI Wanrun, et al. Multi-scale wind-induced fatigue analysis method of high-rise steel braced frame structure[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(1): 137-141.
[6]方 钊,李爱群,李万润,等.钢结构风致疲劳分析的多尺度有限元验证分析[J].浙江大学学报(工学版),2018,52(6):1131-1139.
FANG Zhao, LI Aiqun, LI Wanrun, et al. Verification on multi-scale finite element of wind-induced fatigue of steel structures[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(6):1131-1139.
[7]杨振兴,贺拥军.带跨层支撑立体停车结构的静力及稳定性研究[J].公路,2019,64(6):177-182.
YANG Zhenxing, HE Yongjun. Study on static and stability of three-dimensional parking structure with cross-story support[J]. Highway, 2019, 64(6): 177-182.
[8]贺拥军,刘小华,周绪红.车辆横移过程中高层立体停车结构动力响应分析[J].建筑科学与工程学报,2015,32(5):32-38.
HE Yongjun, LIU Xiaohua, ZHOU Xuhong. Dynamic response analysis of high-rise tridimensional parking structure during horizontal transfer process of vehicle[J]. Journal of Architecture and Civil Engineering, 2015, 32(5): 32-38.
[9]贺拥军,周绪红,唐家云.四边形筒式钢构架立体停车结构的横隔设置研究[J].建筑科学与工程学报,2014,31(3):25-31.
HE Yongjun, ZHOU Xuhong, TANG Jiayun. Research on diaphragm arrangement of quadrangular tube-type steel frame tridimensional parking structure[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 25-31.
[10]贺拥军,姜玉婷,周绪红.基于多尺度模型的立体车库车辆撞击性能研究[J].湖南大学学报(自然科学版),2019,46(1):1-8.
HE Yongjun, JIANG Yuting, ZHOU Xuhong. Research on vehicle impact performance of tridimensional parking structure based on multi-scale model[J]. Journal of Hunan University(Natural Sciences), 2019, 46(1): 1-8.
[11]XIANG S Y, HE Y J, ZHOU X H, et al. Continuous twice-impact analysis of steel parking structure columns[J]. Journal of Constructional Steel Research, 2021, 187: 106989.
[12]XIANG S Y, HE Y J, ZHOU X H. Performance assessment of steel parking structure columns subjected to frontal collision based on reduced vehicular models[J]. Engineering Structures, 2022, 265: 114517.
[13]曹雪芹.立体车库智能梳齿搬运机器人关键技术研究[D].太原:太原科技大学,2020.
CAO Xueqin. Research on the key technology of intelligent card-tooth handling robot in stereo garage[D]. Taiyuan:Taiyuan University of Science and Technology, 2020.
[14]车库建筑设计规范:JGJ 100—2015[S].北京:中国建筑工业出版社,2015.
Code for design of parking garage building: JGJ 100—2015[S]. Beijing: China Architecture & Building Press, 2015.
[15]DONG P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865-876.
[16]DONG P, HONG J K. The master S-N,即可计算出结构的累计疲劳损伤,为工程建设提供了便利性。
4 结 语
(1)车辆的搬运存取过程可用dload子程序模拟,钢结构立体车库的疲劳控制部位在底层靠近后轮梁柱节点A1的受拉翼缘对接焊缝处。
(2)梁柱节点的梁翼缘焊缝与焊缝孔相交区域属于应力高度集中区,疲劳寿命远低于焊缝两端; 相较于单面焊,采用双面焊连接形式的结构应力更为均匀,疲劳性能更好; 受拉翼缘局部焊缝的疲劳寿命随着焊缝根部间隙和坡口角度的增大而减小,且根部间隙的影响占主导因素。
(3)三车位车厢相较于双车位车厢形式的立体车库荷载工况更为复杂,疲劳性能更差; 等效结构应力法考虑了荷载模式、应力集中与构件厚度的综合效应,适用于大型重要结构的疲劳寿命评估。

[1] SIEBER L, URBANEK R, B?R J. Crack-detection in old riveted steel bridge structures[J]. Procedia Structural Integrity, 2019, 17: 339-346.
[2]ZHANG H J, XU S H, NIE B, et al. Effect of corrosion on the fracture properties of steel plates[J]. Construction and Building Materials, 2019, 225: 1202-1213.
[3]刘希月,王元清,石永久,等.高强度钢框架梁柱节点低周疲劳断裂性能试验研究[J].建筑结构学报,2018,39(2):28-36.
LIU Xiyue, WANG Yuanqing, SHI Yongjiu, et al. Experimental study on low-cycle fatigue fracture behavior of high strength steel beam-to-column connection[J]. Journal of Building Structures, 2018, 39(2): 28-36.
[4]罗云蓉,王清远,付 磊,等.地震频率对Q235钢结构材料超低周疲劳行为的影响[J].实验力学,2018,33(5):743-750.
LUO Yunrong, WANG Qingyuan, FU Lei, et al. On the effect of seismic frequency on extremely low cycle fatigue behaviors of Q235 steel structure material[J]. Journal of Experimental Mechanics, 2018, 33(5): 743-750.
[5]方 钊,李爱群,李万润,等.高层钢框架支撑结构多尺度风致疲劳分析方法[J].东南大学学报(自然科学版),2017,47(1):137-141.
FANG Zhao, LI Aiqun, LI Wanrun, et al. Multi-scale wind-induced fatigue analysis method of high-rise steel braced frame structure[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(1): 137-141.
[6]方 钊,李爱群,李万润,等.钢结构风致疲劳分析的多尺度有限元验证分析[J].浙江大学学报(工学版),2018,52(6):1131-1139.
FANG Zhao, LI Aiqun, LI Wanrun, et al. Verification on multi-scale finite element of wind-induced fatigue of steel structures[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(6):1131-1139.
[7]杨振兴,贺拥军.带跨层支撑立体停车结构的静力及稳定性研究[J].公路,2019,64(6):177-182.
YANG Zhenxing, HE Yongjun. Study on static and stability of three-dimensional parking structure with cross-story support[J]. Highway, 2019, 64(6): 177-182.
[8]贺拥军,刘小华,周绪红.车辆横移过程中高层立体停车结构动力响应分析[J].建筑科学与工程学报,2015,32(5):32-38.
HE Yongjun, LIU Xiaohua, ZHOU Xuhong. Dynamic response analysis of high-rise tridimensional parking structure during horizontal transfer process of vehicle[J]. Journal of Architecture and Civil Engineering, 2015, 32(5): 32-38.
[9]贺拥军,周绪红,唐家云.四边形筒式钢构架立体停车结构的横隔设置研究[J].建筑科学与工程学报,2014,31(3):25-31.
HE Yongjun, ZHOU Xuhong, TANG Jiayun. Research on diaphragm arrangement of quadrangular tube-type steel frame tridimensional parking structure[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 25-31.
[10]贺拥军,姜玉婷,周绪红.基于多尺度模型的立体车库车辆撞击性能研究[J].湖南大学学报(自然科学版),2019,46(1):1-8.
HE Yongjun, JIANG Yuting, ZHOU Xuhong. Research on vehicle impact performance of tridimensional parking structure based on multi-scale model[J]. Journal of Hunan University(Natural Sciences), 2019, 46(1): 1-8.
[11]XIANG S Y, HE Y J, ZHOU X H, et al. Continuous twice-impact analysis of steel parking structure columns[J]. Journal of Constructional Steel Research, 2021, 187: 106989.
[12]XIANG S Y, HE Y J, ZHOU X H. Performance assessment of steel parking structure columns subjected to frontal collision based on reduced vehicular models[J]. Engineering Structures, 2022, 265: 114517.
[13]曹雪芹.立体车库智能梳齿搬运机器人关键技术研究[D].太原:太原科技大学,2020.
CAO Xueqin. Research on the key technology of intelligent card-tooth handling robot in stereo garage[D]. Taiyuan:Taiyuan University of Science and Technology, 2020.
[14]车库建筑设计规范:JGJ 100—2015[S].北京:中国建筑工业出版社,2015.
Code for design of parking garage building: JGJ 100—2015[S]. Beijing: China Architecture & Building Press, 2015.
[15]DONG P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865-876.
[16]DONG P, HONG J K. The master rve approach to fatigue of piping and vessel welds[J]. Welding in the World, 2004, 48(1): 28-36.
[17]CHENG B,YE X H, CAO X E, et al. Experimental study on fatigue failure of rib-to-deck welded connections in orthotropic steel bridge decks[J]. International Journal of Fatigue, 2017, 103: 157-167.
[18]ROSU I, ELIAS-BIREMBAUX H L, LEBON F. Finite element modeling of an aircraft tire rolling on a steel drum:experimental investigations and numerical simulations[J]. Applied Sciences, 2018, 8(4): 593.
[19]张 琪.船用D36钢多层多道焊角变形规律的数值模拟研究[D].哈尔滨:哈尔滨工业大学,2016.
ZHANG Qi. Simulation research on the law of angular distortion of D36 steel for shipbuilding during multi-pass welding[D]. Harbin: Harbin Institute of Technology, 2016.
[20]钢结构高强度螺栓连接技术规程:JGJ 82—2011[S].北京:中国建筑工业出版社,2011.
Technical specification for high strength bolt connections of steel structures: JGJ 82—2011[S]. Beijing: China Architecture & Building Press, 2011.
[21]FANG Z, LI A Q, LI W R, et al. Wind-induced fatigue analysis of high-rise steel structures using equivalent structural stress method[J]. Applied Sciences, 2017, 7(1): 71.
[22]气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口:GB/T 985.1—2008[S].北京:中国标准出版社,2008.
Recommended joint preparation for gas welding, manual metal arc welding, gas-shield arc welding and beam welding: GB/T 985.1—2008[S]. Beijing: Standards Press of China, 2008.
[23]吕 双.基于排队论的立体车库泊位规模和车辆存取速度计算方法研究[D].北京:北京交通大学,2017.
LYU Shuang. Research on the stereo garage scale and access speed based on queuing theory[D]. Beijing: Beijing Jiaotong University, 2017.

Memo

Memo:
-
Last Update: 2025-07-10