|Table of Contents|

Study on freeze-thaw deterioration of POM fiber reinforced expanded polystyrene lightweight concrete(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年04期
Page:
92-104
Research Field:
建筑材料
Publishing date:

Info

Title:
Study on freeze-thaw deterioration of POM fiber reinforced expanded polystyrene lightweight concrete
Author(s):
ZHU Jian GAO Zhen CAO Junping LIAO Wenjie GUO Wenhao LIN Chaojun
(School of Civil Engineering and Transportation, Foshan University, Foshan 528225, Guangdong, China)
Keywords:
POM fiber EPS lightweight concrete strength loss attenuation model capillary water absorption
PACS:
TU528
DOI:
10.19815/j.jace.2023.12092
Abstract:
In order to effectively improve the safety and service life of expanded polystyrene(EPS)lightweight concrete in extremely cold regions, different mass fractions of polyoxymethylene(POM)fibers were added to EPS lightweight concrete. By comparing and analyzing the changes in mass loss rate, strength, elastic modulus, stiffness, and capillary water absorption rate of EPS lightweight concrete specimens with added POM fibers under different freeze-thaw conditions, the influence of POM fibers on the frost resistance of EPS lightweight concrete was studied. The results show that POM fibers have a sustained improvement effect on the anti-cracking and tensile properties of EPS lightweight concrete under freeze-thaw conditions. When the POM fiber content is 0.6%, the relative elastic modulus exhibits the slowest decreasing trend during freeze-thaw cycles. When the POM fiber content is 0.9%, the mass loss rate, relative dynamic elastic modulus and strength show minimal changes during freeze-thaw cycles. Simultaneously, the resistance to capillary water absorption after freeze-thaw cycles is the highest. The established secondary polynomial and Weibull distribution strength decay prediction models can both effectively predict the degradation process of compressive strength in freeze-thaw cycles for POM fiber-reinforced EPS lightweight concrete. The accuracy of the secondary polynomial decay prediction model exceeds 99%.

References:

[1] 曹军平,朱 健,高 镇.基于正交试验的EPS轻型混凝土配合比设计及性能研究[J].硅酸盐通报,2023,42(4):1270-1281.
CAO Junping, ZHU Jian, GAO Zhen. Mix proportion design and performance study of EPS lightweight concrete based on orthogonal experiment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1270-1281.
[2]李碧雄,汪知文,苏柳月,等.减小EPS混凝土收缩的配合工艺试验研究[J].材料导报,2021,35(16):16021-16027.
LI Bixiong, WANG Zhiwen, SU Liuyue, et al. Experimental study on matching process to reduce the shrinkage properties of EPS concrete[J]. Materials Reports, 2021, 35(16): 16021-16027.
[3]ARVIN M R, GHAFARY G R, HATAF N, et al. Shear behavior of EPS geofoam reinforced with polypropylene fiber[J]. Geomechanics and Engineering, 2021, 25(5): 347-355.
[4]SUN Y, LI C X, YOU J J, et al. An investigation of the properties of expanded polystyrene concrete with fibers based on an orthogonal experimental design[J]. Materials, 2022, 15(3): 1228.
[5]赵子斌,孙 红,赵丽平.改性碳纤维增强聚苯乙烯泡沫混凝土的制备及其性能研究[J].塑料科技,2022,50(3):33-36.
ZHAO Zibin, SUN Hong, ZHAO Liping. Preparation and properties of modified carbon fiber reinforced polystyrene foamed concrete[J]. Plastics Science and Technology, 2022, 50(3): 33-36.
[6]张文华,吕毓静,刘鹏宇.EPS混凝土研究进展综述[J].材料导报,2019,33(13):2214-2228.
ZHANG Wenhua, LYU Yujing, LIU Pengyu. Review on the research progress of EPS concrete[J]. Materials Reports, 2019, 33(13): 2214-2228.
[7]李满枝,陈 威,李亚斌.国内聚甲醛纤维研究进展与应用展望[J].天津化工,2021,35(2):17-18.
LI Manzhi, CHEN Wei, LI Yabin. Research progress and application prospect of polyoxymethylene fiber in China[J]. Tianjin Chemical Industry, 2021, 35(2): 17-18.
[8]吕志恒,程 铭,蒋喜生,等.玻璃纤维和聚丙烯纤维改善混凝土微观结构研究[J].中外公路,2020,40(6):267-270.
LU Zhiheng, CHENG Ming, JIANG Xisheng, et al. Study on improving the microstructure of concrete with glass fiber and polypropylene fiber[J]. Journal of China & Foreign Highway, 2020, 40(6): 267-270.
[9]田国峰,李建华,战佳宇,等.聚甲醛纤维对砂浆性能的影响研究[J].混凝土与水泥制品,2017(7):51-54.
TIAN Guofeng, LI Jianhua, ZHAN Jiayu, et al. Influence research of polyoxymethylene(POM)fiber on properties of mortar[J]. China Concrete and Cement Products, 2017(7): 51-54.
[10]ZHANG J C, LIU T X, DONG B, et al. Experimental investigation of mechanical characterizations of a POM fiber-reinforced mortar material[J]. Frontiers in Physics, 2022, 10: 837355.
[11]夏旸昊,杨鼎宜,高 函,等.聚甲醛纤维超高强混凝土断裂性能研究[J].工业建筑,2022,52(12):179-185.
XIA Yanghao, YANG Dingyi, GAO Han, et al. Research on fracture properties of ultra-high strength concrete with polyformaldehyde fibers[J]. Industrial Construction, 2022, 52(12): 179-185.
[12]周至阳,梅军鹏,李海南,等.聚甲醛纤维增强砂浆的力学性能和干燥收缩试验研究[J].硅酸盐通报, 2022,41(10):3386-3393.
ZHOU Zhiyang, MEI Junpeng, LI Hainan, et al. Mechanical properties and drying shrinkage of polyoxymethylene fiber reinforced mortar[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3386-3393.
[13]马明龙,杨 合,白 冰,等.聚甲醛纤维对超高性能混凝土力学性能的影响研究[J].混凝土,2022(11):101-105.
MA Minglong, YANG He, BAI Bing, et al. Study on the effect of polyoxymethylene fiber on the mechanical properties of ultra-high performance concrete[J]. Concrete, 2022(11): 101-105.
[14]姚运航.聚甲醛纤维海水海砂混凝土力学性能及耐高温性能研究[D].重庆:重庆大学,2022.
YAO Yunhang. Study on mechanical properties and high temperature resistance of polyoxymethylene fiber seawater and sea-sand concrete[D]. Chongqing: Chongqing University, 2022.
[15]YU R, LIU K N, YIN T Y, et al. Comparative study on the effect of steel and polyoxymethylene fibers on the characteristics of ultra-high performance concrete(UHPC)[J]. Cement and Concrete Composites, 2022, 127: 104418.
[16]DIXIT A, PANG S D, KANG S H, et al. Lightweight structural cement composites with expanded polystyrene(EPS)for enhanced thermal insulation[J]. Cement and Concrete Composites, 2019, 102: 185-197.
[17]曹军平,朱 健,郭文昊.矿物掺合料对聚苯乙烯轻型混凝土力学性能的影响[J].佛山科学技术学院学报(自然科学版),2022,40(2):14-22, 35.
CAO Junping, ZHU Jian, GUO Wenhao. The influence of mineral admixture on lightweight cement composites with expanded polystyrene[J]. Journal of Foshan University(Natural Science Edition), 2022, 40(2): 14-22, 35.
[18]Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes: ASTM C1585-13[S]. West Conshohocken: ASTM, 2020.
[19]张丽辉,周华新,刘建忠,等.聚甲醛纤维增强砂浆塑性抗开裂性能的研究[J].新型建筑材料,2018,45(6):48-52.
ZHANG Lihui, ZHOU Huaxin, LIU Jianzhong, et al. Research on anti-plastic cracking property of polyoxymethylene fiber-reinforced cement mortar[J]. New Building Materials, 2018, 45(6): 48-52.
[20]李 杨,彭子凌,李家正,等.聚甲醛(POM)纤维对混凝土工作性和力学性能影响的研究[J].建筑结构,2022,52(增2):1004-1009.
LI Yang, PENG Ziling, LI Jiazheng, et al. Influences of polyformaldehyde(POM)fiber on workability and mechanical properties of hydraulic concrete[J]. Building Structure, 2022, 52(S2): 1004-1009.
[21]刘凯华,严佳川,胡 琼,等.冻融循环后自密实混凝土受压本构关系研究[J].工业建筑,2020,50(12):76-81,111.
LIU Kaihua, YAN Jiachuan, HU Qiong, et al. Research on the compressive constitutive model of self-compacting concrete after freeze-thaw cycles[J]. Industrial Construction, 2020, 50(12): 76-81, 111.
[22]关 虓,张鹏鑫,邱继生,等.冻融环境下活化煤矸石粉混凝土毛细吸水性能[J].建筑材料学报,2023,26(5):483-491.
GUAN Xiao, ZHANG Pengxin, QIU Jisheng, et al. Capillary water absorption properties of activated coal gangue powder concrete in freeze-thaw environment[J]. Journal of Building Materials, 2023, 26(5): 483-491.
[23]邱继生,郭 鹏,关 虓,等.冻融损伤下煤矸石陶粒混凝土毛细吸水性能研究[J].新型建筑材料,2019,46(12):32-36, 46.
QIU Jisheng, GUO Peng, GUAN Xiao, et al. Study on capillary water absorption performance of coal gangue ceramsite concrete under freeze-thaw damage[J]. New Building Materials, 2019, 46(12): 32-36, 46.
[24]解国梁,申向东,刘金云,等.玄武岩纤维再生混凝土抗冻性能及损伤劣化模型[J].复合材料科学与工程,2021(4):55-60.
XIE Guoliang, SHEN Xiangdong, LIU Jinyun, et al. Frost resistance and damage degradation model of basalt fiber regenerated concrete[J]. Composites Science and Engineering, 2021(4): 55-60.
[25]郑 挚.混合盐-冻融循环耦合作用下混杂纤维混凝土试验研究[D].武汉:湖北工业大学,2021.
ZHENG Zhi. Experimental study on hybrid fiber reinforced concrete under the coupling action of mixed salt freeze thaw cycle[D]. Wuhan: Hubei University of Technology, 2021.
[26]吴瑞东.石英岩型铁尾矿微粉及废石对水泥基材料的性能影响及机理[D].北京:北京科技大学,2020.
WU Ruidong. Performance and mechanism analysis of quartz-type iron tailings powder and waste rock in cement-based materials[D]. Beijing: University of Science and Technology Beijing, 2020.
[27]肖 鑫,王嘉宇,李 进,等.冻融循环作用下高黏高弹沥青混凝土动力学特征及损伤演化行为[J].中国公路学报,2023,36(12):64-76.
XIAO Xin, WANG Jiayu, LI Jin, et al. Dynamic performance and damage evolution behavior of high-viscosity high-elasticity asphalt concrete under repeated freeze-thaw effect[J]. China Journal of Highway and Transport, 2023, 36(12): 64-76.
[28]SHI X S, WANG X Q, WANG Q Y, et al. Experimental analysis and establishment of strength attenuation model of POM fiber reinforced geopolymeric recycled concrete under freeze-thaw cycles[J]. Materials, 2023, 16(4): 1-15.

Memo

Memo:
-
Last Update: 2025-07-10