|本期目录/Table of Contents|

[1]武艳如,段明勋,徐皓,等.大跨度桁架结构风振响应及风振系数研究[J].建筑科学与工程学报,2025,42(04):10-21.[doi:10.19815/j.jace.2023.11032]
 WU Yanru,DUAN Mingxun,XU Hao,et al.Study on wind vibration response and wind vibration coefficient of large-span truss structure[J].Journal of Architecture and Civil Engineering,2025,42(04):10-21.[doi:10.19815/j.jace.2023.11032]
点击复制

大跨度桁架结构风振响应及风振系数研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年04期
页码:
10-21
栏目:
建筑结构
出版日期:
2025-07-10

文章信息/Info

Title:
Study on wind vibration response and wind vibration coefficient of large-span truss structure
文章编号:
1673-2049(2025)04-0010-12
作者:
武艳如1,段明勋1,徐皓1,张雯1,邢国华1,陈晨2
(1. 长安大学 建筑工程学院,陕西 西安 710061; 2. 中建三局集团西北有限公司,陕西 西安 710065)
Author(s):
WU Yanru1, DUAN Mingxun1, XU Hao1, ZHANG Wen1, XING Guohua1, CHEN Chen2
(1. School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China; 2. China State Construction Engineering Third Bureau Northwest Co., Ltd., Xi'an 710065, Shaanxi, China)
关键词:
大跨桁架结构 风洞试验 时域法 风振响应 风振系数
Keywords:
large-span truss structure wind tunnel test time-domain method wind vibration response wind vibration coefficient
分类号:
TU973
DOI:
10.19815/j.jace.2023.11032
文献标志码:
A
摘要:
为了明确结构风致振动特性并提出风振系数建议取值,基于风洞试验和数值模拟结果,采用时域法计算了静风荷载和脉动风荷载下不同矢跨比结构的静位移和动力响应; 运用修正的Newmark-β法积分计算得到各节点的时程响应,并采用频域法分析了结构位移响应的频谱特性,得到结构位移响应均方根值,在此基础上计算了不同来流作用下结构各区域的风振系数。结果表明:来流垂直于结构纵向和横向时,结构顶部和尾流区易发生整体大幅涡激共振,斜风向作用下结构顶部和背风区易发生涡激振动; 来流方向对结构各节点位移响应均方根分布特性和其最大值分布影响显著,最大的位移响应均方根为8.5 mm; 特征湍流作用显著的部位风振系数较大,给出的结构各区域在不同来流作用下的风振系数建议取值可供该类结构抗风设计参考。
Abstract:
In order to clarify the wind vibration characteristics of structure and propose recommended values of wind-induced vibration coefficient, based on wind tunnel tests and numerical simulation results, the time-domain method was used to calculate the static displacement and dynamic response of structures with different aspect ratios under static and fluctuating wind loads. The modified Newmark-β method was used to integrate and calculate the time-history response of each node, and the frequency domain method was used to analyze the spectral characteristics of structural displacement response. The root mean square value of structural displacement response was statistically analyzed, and on this basis, the wind vibration coefficients of different regions of structure under different incoming flow conditions were calculated. The results show that when the incoming flow is perpendicular to the longitudinal and transverse directions of structure, the top and wake areas of structure are prone to significant overall vortex-induced resonance, while the top and leeward areas of structure are prone to vortex-induced vibration under oblique wind direction. The direction of incoming flow has a significant impact on the root mean square distribution characteristics and maximum value distribution of displacement responses at each node of structure, with the maximum displacement response having a root mean square of 8.5 mm. The wind vibration coefficient is higher in areas with significant turbulence effects. The recommended values for wind vibration coefficients in different regions of structure under different incoming flow effects can provide reference for wind resistant design of such structures.

参考文献/References:

[1] CHEN B, WU T, YANG Y L, et al. Wind effects on a cable-suspended roof: full-scale measurements and wind tunnel based predictions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 155: 159-173.
[2]CAO Z G, SU N, WU Y, et al. Gust response envelope approach to the equivalent static wind load for large-span grandstand roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 180: 108-121.
[3]VIZOTTO I, FERREIRA A M. Wind force coefficients on hexagonal free form shell[J]. Engineering Structures, 2015, 83: 17-29.
[4]SADEGHI H, HERISTCHIAN M, AZIMINEJAD A, et al. Wind effect on grooved and scallop domes[J]. Engineering Structures, 2017, 148: 436-450.
[5]MORRISON M J, KOPP G A. Effects of turbulence intensity and scale on surface pressure fluctuations on the roof of a low-rise building in the atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 183: 140-151.
[6]建筑结构荷载规范:GB 50009—2012[S].北京:中国建筑工业出版社,2012.
Load code for the design of building structures: GB 50009—2012[S]. Beijing: China Architecture & Building Press, 2012.
[7]LIU M, LI Q S, HUANG S H, et al. Evaluation of wind effects on a large span retractable roof stadium by wind tunnel experiment and numerical simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 39-57.
[8]武 岳,孙 瑛,郑朝荣,等.风工程与结构抗风设计[M].哈尔滨:哈尔滨工业大学出版社,2014.
WU Yue, SUN Ying, ZHENG Chaorong, et al. Wind engineering and wind-resistant design of structures[M]. Harbin: Harbin Institute of Technology Press, 2014.
[9]LUO N, JIA H Y, LIAO H L. Coupled wind-induced responses and equivalent static wind loads on long-span roof structures with the consistent load-response-correlation method[J]. Advances in Structural Engineering, 2018, 21(1): 71-81.
[10]李玉学,冯励睿,李海云,等.大跨屋盖结构脉动风振响应特性预测方法研究[J].工程力学,2021,38(7):159-166,182.
LI Yuxue, FENG Lirui, LI Haiyun, et al. A method for determining the characteristic of fluctuating wind-induced response of large-span roofs[J]. Engineering Mechanics, 2021, 38(7): 159-166, 182.
[11]LUO N, LIAO H L, LI M S. An efficient method for universal equivalent static wind loads on long-span roof structures[J]. Wind and Structures, 2017, 25(5): 493-506.
[12]孙 瑛,苏 宁,武 岳.锥状涡作用下大跨度平屋盖表面脉动风压谱模型研究[J].土木工程学报,2014,47(1):88-98.
SUN Ying, SU Ning, WU Yue. Modeling of conical vortex induced fluctuating wind pressure spectra on large-span flat roofs[J]. China Civil Engineering Journal, 2014, 47(1): 88-98.
[13]SU N, CAO Z G, WU Y. Fast frequency-domain algorithm for estimating the dynamic wind-induced response of large-span roofs based on Cauchy's residue theorem[J]. International Journal of Structural Stability and Dynamics, 2018, 18(3): 1850037.
[14]LI T T, YAN G R, YUAN F P, et al. Dynamic structural responses of long-span dome structures induced by tornadoes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 293-308.
[15]WANG C, JIANG Y C, LI X Y, et al. Wind-induced vibration response analysis of Chinese solar greenhouses[J]. Computers and Electronics in Agriculture, 2021, 181: 105954.
[16]火力发电厂土建结构设计技术规程:DL 5022—2012[S]. 北京:中国计划出版社,2012.
Technical Code for the design of civil structure of fossil-fired power plant: DL 5022—2012[S]. Beijing: China Planning Press, 2012.
[17]HUANG Y Q, ZHONG L, FU J Y. Wind-induced vibration and equivalent wind load of double-layer cylindrical latticed shells[J]. Journal of Vibroengineering, 2014, 16(2): 1063-1078.
[18]SUN W Y, ZHANG Q H. Universal equivalent static wind loads of fluctuating wind loads on large-span roofs based on compensation of structural frequencies and modes[J]. Structures, 2020, 26: 92-104.
[19]WU Y R, WU X H, WEI S T, et al. Experimental study of wind pressure fluctuating characteristics and wind load shape factor of long-span cylinder roof structure[J]. The Structural Design of Tall and Special Buildings, 2021, 30(10): e1860.
[20]WU Y R, WEN Z, WU X H, et al. Peak factor estimation method of non-Gaussian wind pressures on long-span tri-centered cylindrical roof structures[J]. The Structural Design of Tall and Special Buildings, 2023, 32(3): e1994.
[21]Minimum design loads for buildings and other structures: ANSI/ASCE 7-98[S]. New York: ASCE, 2002.

相似文献/References:

[1]王松帆,汤华.超高层建筑的风振响应及等效静风荷载研究[J].建筑科学与工程学报,2010,27(01):102.
 WANG Song-fan,TANG Hua.Research on Wind Vibration Response and Equivalent Static Wind Loads of Super High-rise Buildings[J].Journal of Architecture and Civil Engineering,2010,27(04):102.
[2]董锐,赵林,葛耀君.大型冷却塔人字柱临时期最优拆除位置分析[J].建筑科学与工程学报,2011,28(03):56.
 DONG Rui,ZHAO Lin,GE Yao-jun.Analysis of Optimal Removing Location of Diagonal Columns in Large Cooling Towers' Temporary Period[J].Journal of Architecture and Civil Engineering,2011,28(04):56.
[3]汤华,王松帆.基于风洞试验的高层建筑风荷载研究及抗风设计[J].建筑科学与工程学报,2012,29(02):96.
 TANG Hua,WANG Song-fan.Wind Load Research and Wind-resistant Design of High-rise Buildings Based on Wind Tunnel Test[J].Journal of Architecture and Civil Engineering,2012,29(04):96.
[4]柯世堂,赵林,葛耀君,等.超大型排烟冷却塔风压分布及双孔道位置优化[J].建筑科学与工程学报,2009,26(02):52.
 KE Shi-tang,ZHAO Lin,GE Yao-jun,et al.Wind Pressure Distribution and Double Holes Position Optimization for Super Large-scale Cooling Towers with Flue Gas[J].Journal of Architecture and Civil Engineering,2009,26(04):52.
[5]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展[J].建筑科学与工程学报,2006,23(01):1.
 SHEN Shi-zhao,WU Yue.Research Progress on Fluid-Solid Interaction Effect of Wind-Induced Vibration Response of Membrane Structure[J].Journal of Architecture and Civil Engineering,2006,23(04):1.
[6]沈之容,王之宏.上海北外滩酒店中庭结构风洞试验[J].建筑科学与工程学报,2006,23(04):74.
 SHEN Zhi-rong,WANG Zhi-hong.Wind Tunnel Test on Atrium Structure in Shanghai North Bund Hotel[J].Journal of Architecture and Civil Engineering,2006,23(04):74.
[7]刘健新,李加武.中国西部地区桥梁风工程研究[J].建筑科学与工程学报,2005,22(04):32.
 LIU Jian-xin,LI Jia-wu.Study of wind project of bridge in western area of China[J].Journal of Architecture and Civil Engineering,2005,22(04):32.
[8]涂 俊,王玉银,刘永健,等.大跨钢箱拱-波形钢-桁架组合梁拱桥抗风性能[J].建筑科学与工程学报,2019,36(04):47.
 TU Jun,WANG Yu-yin,LIU Yong-jian,et al.Wind Resistance of Large-span Steel Box Arch-corrugated Steel-truss Composite Beam Arch Bridge[J].Journal of Architecture and Civil Engineering,2019,36(04):47.
[9]何晗欣,张亮亮,杨鹏瑞,等.外凸式矩形高层建筑风压研究[J].建筑科学与工程学报,2019,36(06):72.
 HE Han-xin,ZHANG Liang-liang,YANG Peng-rui,et al.Study on Wind Pressure of Outer Convex Rectangular High-rise Building[J].Journal of Architecture and Civil Engineering,2019,36(04):72.
[10]李加武,朱长宇.基于表面风压分析的分离式双箱梁流场特性研究[J].建筑科学与工程学报,2021,38(02):69.[doi:10.19815/j.jace.2020.09081]
 LI Jia-wu,ZHU Chang-yu.Study on Flow Field Characteristics Around Separated Twin-box Girder Based on Surface Wind Pressure Analysis[J].Journal of Architecture and Civil Engineering,2021,38(04):69.[doi:10.19815/j.jace.2020.09081]

备注/Memo

备注/Memo:
收稿日期:2023-11-12
基金项目:国家自然科学基金项目(52308135); 陕西省博士后科研项目(2023BSHTBZZ35); 陕西省教育厅政企联合资助项目(23JE006)
作者简介:武艳如(1988-),女,工学博士,讲师,E-mail:wuyr@chd.edu.cn。
Author resume: WU Yanru(1988-), female, PhD, assistant professor, E-mail: wuyr@chd.edu.cn.
更新日期/Last Update: 2025-07-10