|本期目录/Table of Contents|

[1]黄宣凯,廖飞宇,王献挚,等.坑槽腐蚀对钢管混凝土侧向冲击性能的影响研究[J].建筑科学与工程学报,2025,42(04):31-42.[doi:10.19815/j.jace.2023.12006]
 HUANG Xuankai,LIAO Feiyu,WANG Xianzhi,et al.Study on effect of pitting corrosion on behavior of concrete-filled steel tube under lateral impact[J].Journal of Architecture and Civil Engineering,2025,42(04):31-42.[doi:10.19815/j.jace.2023.12006]
点击复制

坑槽腐蚀对钢管混凝土侧向冲击性能的影响研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年04期
页码:
31-42
栏目:
建筑结构
出版日期:
2025-07-10

文章信息/Info

Title:
Study on effect of pitting corrosion on behavior of concrete-filled steel tube under lateral impact
文章编号:
1673-2049(2025)04-0031-12
作者:
黄宣凯1,廖飞宇1,王献挚1,陈宇峰2
(1. 福建农林大学 交通与土木工程学院,福建 福州 350108; 2. 福建建工集团有限责任公司,福建 福州 350003)
Author(s):
HUANG Xuankai1, LIAO Feiyu2, WANG Xianzhi1, CHEN Yufeng2
(1. College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, Fujian, China; 2. Fujian Construction Engineering Group Co., Ltd., Fuzhou 350003, Fujian, China)
关键词:
钢管混凝土 坑槽腐蚀 侧向冲击 有限元模型 参数分析
Keywords:
concrete-filled steel tube pitting corrosion lateral impact finite element model parametric analysis
分类号:
TU398
DOI:
10.19815/j.jace.2023.12006
文献标志码:
A
摘要:
为研究侧向冲击荷载作用下坑槽腐蚀对钢管混凝土力学性能的影响,建立了考虑坑槽腐蚀后的圆钢管混凝土构件有限元模型,并完成了4根考虑坑槽腐蚀缺陷的圆钢管混凝土柱落锤侧向冲击试验,利用试验数据验证了有限元模型的可靠性。通过有限元模型对侧向冲击荷载作用下带坑槽腐蚀的钢管混凝土柱工作机理进行了研究,并分析了坑槽深度、坑槽个数、坑槽分布、腐蚀体积损失度和冲击速度等因素对钢管混凝土柱抗侧向冲击性能的影响规律。结果表明:坑槽腐蚀不仅使钢管更容易发生局部屈曲,而且削弱了钢管和混凝土之间的相互作用,使构件的抗冲击性能降低; 随着坑槽深度、个数及腐蚀体积损失度的增大,构件的冲击持续时间会相应增加,而冲击力峰值、冲击力平台值会随之下降; 在相同腐蚀体积损失度下,坑槽个数对钢管混凝土柱抗侧向冲击性能衰退的影响比坑槽深度更为显著,而坑槽不均匀分布情况相比于均匀分布情况会对钢管混凝土抗侧向冲击性能产生更不利的影响。
Abstract:
In order to study the effect of pitting corrosion on the mechanical behavior of concrete-filled steel tube(CFST)under lateral impact loads, a finite element model of circular CFST considering pitting corrosion was established. The tests of four circular CFST specimens considering pitting corrosion defects subjected to lateral impact using a falling hammer were carried out, and the reliability of finite element model was verified using experimental data. The working mechanism of CFST columns with pitting corrosion under lateral impact loads was studied using finite element models. The influence of factors such as pit depth, number of pits, pit distribution, corrosion volume loss, and impact velocity on the lateral impact resistance of CFST columns was investigated. The results show that pitting corrosion not only makes steel pipes more prone to local buckling, but also weakens the interaction between steel pipe and concrete, resulting in a decrease in the impact resistance of components. With the increase of pit depth, number of pits, and corrosion volume loss, the impact duration of component will correspondingly increase, while the peak and plateau values of impact force will decrease accordingly. Under the same corrosion volume loss, the number of pits has a more significant impact on the lateral impact resistance of CFST columns than the pit depth. The non-uniform distribution of pits has more adverse effect on the lateral impact resistance of CFST compared to the uniform distribution.

参考文献/References:

[1] 韩林海.钢管混凝土结构:理论与实践[M].3版.北京:科学出版社,2016.
HAN Linhai. Concrete-filled steel tubular structures: theory and practice[M]. 3rd ed. Beijing: Science Press, 2016.
[2]韩恩厚,陈建敏,宿彦京,等.海洋工程材料和结构的腐蚀与防护[M].北京:化学工业出版社,2017.
HAN Enhou, CHEN Jianmin, SU Yanjing. Corrosion and protection for marine, offshore and coastal structures[M]. Beijing: Chemical Industry Press, 2017.
[3]工业建筑防腐蚀设计标准:GB/T 50046—2018[S].北京:中国计划出版社,2019.
Standard for anticorrosion design of industrial constructions: GB/T 50046—2018[S]. Beijing: China Planning Press, 2019.
[4]王仁华,赵沙沙.随机点蚀损伤钢板的极限强度预测[J].工程力学,2018,35(12):248-256.
WANG Renhua, ZHAO Shasha. Ultimate strength prediction of steel plate with random pitting corrosion damage[J]. Engineering Mechanics, 2018, 35(12): 248-256.
[5]WANG R H, SHENOI R A. Experimental and numerical study on ultimate strength of steel tubular members with pitting corrosion damage[J]. Marine Structures, 2019, 64: 124-137.
[6]杨明飞,沙志平,陈宜网,等.局部腐蚀损伤下钢结构整体抗震性能研究[J].黄山学院学报,2020, 22(5): 74-77.
YANG Mingfei, SHA Zhiping, CHEN Yiwang, et al. Study on seismic performance of steel structures with local corrosion[J]. Journal of Huangshan University, 2020, 22(5): 74-77.
[7]廖 栩,李吉人,王庆利,等.局部腐蚀方中空夹层钢管混凝土偏压性能研究[J].结构工程师,2021,37(4):48-57.
LIAO Xu, LI Jiren, WANG Qingli, et al. Research on the eccentric compression performance of square CFDST under local corrosion[J]. Structural Engineers, 2021, 37(4): 48-57.
[8]LI G, HOU C, SHEN L M. Life-cycle analysis of FRP-strengthened offshore CFST columns suffering from steel corrosion[J]. Composite Structures, 2021, 277: 114607.
[9]侯川川.低速横向冲击荷载下圆钢管混凝土构件的力学性能研究[D].北京:清华大学,2012.
HOU Chuanchuan. Study on performance of circular concrete-filled steel tubular(CFST)members under low velocity transverse impact[D]. Beijing: Tsinghua University, 2012.
[10]WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular(CFST)members under lateral impact: experiment and FEA model[J]. Journal of Constructional Steel Research, 2013, 80: 188-201.
[11]HAN L H, HOU C C, ZHAO X L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading[J]. Journal of Constructional Steel Research, 2014, 92: 25-39.
[12]HOU C C, HAN L H. Life-cycle performance of deteriorated concrete-filled steel tubular(CFST)structures subject to lateral impact[J]. Thin-walled Structures, 2018, 132: 362-374.
[13]康昌敏,王 蕊,朱 翔.轴压比对钢管混凝土柱侧向冲击性能影响研究[J].工程力学,2020,37(增1):254-260.
KANG Changmin, WANG Rui, ZHU Xiang. The influence of axial compression ratio on the lateral impact performance of concrete filled steel tube columns[J]. Engineering Mechanics, 2020, 37(S1): 254-260.
[14]HAN L H, YAO G H, TAO Z. Performance of concrete-filled thin-walled steel tubes under pure torsion[J]. Thin-walled Structures, 2007, 45(1): 24-36.
[15]DAI P J, LIAO F Y, HOU C C, et al. Performance of concrete filled steel tubular(CFST)members with circumferential gap under lateral impact[J]. Journal of Constructional Steel Research, 2023, 210: 108103.
[16]潘 爽.侧向冲击下方中空夹层钢管混凝土柱动力响应与剩余承载力研究[D].福州:福建农林大学,2024.
PAN Shuang. Study on dynamic responses and residual axial bearing capacity of square CFDST columns under lateral impact[D]. Fuzhou: Fujian Agriculture and Forestry University, 2024.
[17]ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17): 4648-4661.
[18]PAN Z F, ZHANG H P, ZENG B, et al. Statistical evaluation of CEB-FIP 2010 model for concrete creep and shrinkage[J]. Materials, 2023, 16(4): 1576.
[19]康 苗,朱 翔,王 蕊,等.侧向冲击作用下圆钢管-钢骨混凝土柱抗冲击性能研究[J].建筑结构学报,2020,41(增1):128-135.
KANG Miao, ZHU Xiang, WANG Rui, et al. Study on impact resistance of circular steel tube columns filled with steel-reinforced concrete under lateral impact[J]. Journal of Building Structures, 2020, 41(S1): 128-135.
[20]侯川川,王 蕊,韩林海.低速横向冲击下钢管混凝土构件的力学性能研究[J].工程力学,2012,29(增1):107-110.
HOU Chuanchuan, WANG Rui, HAN Linhai. Performance of concrete-filled steel tubular(CFST)members under low velocity transverse impact[J]. Engineering Mechanics, 2012, 29(S1): 107-110.
[21]郭志辉.圆中空夹层钢管混凝土抗撞设计方法研究[D].太原:太原理工大学,2021.
GUO Zhihui. Research on impact resistance design methods of circular concrete filled double-skin steel tubular[D]. Taiyuan: Taiyuan University of Technology, 2021.
[22]NAKAI T, MATSUSHITA H, YAMAMOTO N, et al. Effect of pitting corrosion on local strength of hold frames of bulk carriers(1st report)[J]. Marine Structures, 2004, 17(5): 403-432.
[23]秦静远.考虑点蚀损伤的海工钢管力学性能研究[D].大连:大连理工大学,2020.
QIN Jingyuan. Study on mechanical properties of marine steel pipe considering pitting damage[D]. Dalian: Dalian University of Technology, 2020.
[24]刘亚玲.常见约束类型的钢管混凝土构件侧向冲击响应试验研究与数值分析[D].太原:太原理工大学, 2005.
LIU Yaling. Experiment research and numerical analysis of lateral impact respond of steel tube-confined concrete at common type restrain[D]. Taiyuan: Taiyuan University of Technology, 2005.
[25]王 蕊.钢管混凝土结构构件在侧向撞击下动力响应及其损伤破坏的研究[D].太原:太原理工大学, 2008.
WANG Rui. Study on the dynamic response and damage failure of concrete filled steel tube under lateral impact[D]. Taiyuan: Taiyuan University of Technology, 2008.

相似文献/References:

[1]刘永健,姜 磊,张 宁.钢管混凝土中钢管的纵向容许应力[J].建筑科学与工程学报,2015,32(06):1.
 LIU Yong-jian,JIANG Lei,ZHANG Ning.Longitudinal Allowable Stress of Steel Tube in Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2015,32(04):1.
[2]李文贵,罗智予,龙 初,等.钢管混凝土与钢管再生骨料混凝土抗冲击性能研究综述[J].建筑科学与工程学报,2016,33(04):25.
 LI Wen-gui,LUO Zhi-yu,LONG Chu,et al.Review of Impact Resistance of CFST and RACFST[J].Journal of Architecture and Civil Engineering,2016,33(04):25.
[3]赵金钢,赵人达,占玉林.钢管混凝土徐变效应随机性灵敏度分析[J].建筑科学与工程学报,2016,33(04):44.
 ZHAO Jin-gang,ZHAO Ren-da,ZHAN Yu-lin.Randomness Sensitivity Analysis of Creep Effect for Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2016,33(04):44.
[4]晏巧玲,陈宝春,薛建阳.钢管混凝土平缀管格构柱换算长细比计算方法[J].建筑科学与工程学报,2016,33(06):98.
 YAN Qiao-ling,CHEN Bao-chun,XUE Jian-yang.Calculation Method on Equivalent Slenderness Ratio of Concrete-filled Steel Tube Battened Columns[J].Journal of Architecture and Civil Engineering,2016,33(04):98.
[5]黄卿维,余印根,韦建刚,等.钢管混凝土拱桥技术状况检测与评定[J].建筑科学与工程学报,2011,28(03):34.
 HUANG Qing-wei,YU Yin-gen,WEI Jian-gang,et al.Technical Detection and Assessment of Concrete-filled Steel Tubular Arch Bridge[J].Journal of Architecture and Civil Engineering,2011,28(04):34.
[6]檀永杰,徐波,吴智敏,等.基于超声对测法的钢管混凝土脱空检测试验[J].建筑科学与工程学报,2012,29(02):102.
 TAN Yong-jie,XU Bo,WU Zhi-min,et al.Experiment on Void Area Testing of Concrete-filled Steel Tube Based on Ultrasonic Testing Method[J].Journal of Architecture and Civil Engineering,2012,29(04):102.
[7]魏锦,赵均海,刘彦东,等.钢管混凝土轴压短柱的极限承载力分析[J].建筑科学与工程学报,2008,25(03):81.
 WEI Jin,ZHAO Jun-hai,LIU Yan-dong,et al.Analysis of Ultimate Bearing Capacity of Concrete-filled Steel Tubular Axial Compression Short Columns[J].Journal of Architecture and Civil Engineering,2008,25(04):81.
[8]高婧,陈宝春.波形钢板钢管混凝土柱的极限承载力[J].建筑科学与工程学报,2008,25(04):47.
 GAO Jing,CHEN Bao-chun.Ultimate Load Carrying Capacity of Concrete-filled Steel Tubular Column with Corrugated Steel Webs[J].Journal of Architecture and Civil Engineering,2008,25(04):47.
[9]王毅红,郭增辉,李先顺,等.带有芯钢管的钢管混凝土节点的受力机理[J].建筑科学与工程学报,2007,24(01):64.
 WANG Yi-hong,GUO Zeng-hui,LI Xian-shun,et al.Bearing Mechanism of Concrete-filled Steel Tubular Joint with Core Steel Tube[J].Journal of Architecture and Civil Engineering,2007,24(04):64.
[10]宋兵,王湛.高强混凝土自收缩对钢管混凝土轴压力学性能的影响[J].建筑科学与工程学报,2007,24(02):59.
 SONG Bing,WANG Zhan.Influences of Autogenous Shrinkage of High-strength Concrete on AxialCompression Mechanics Behavior of Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2007,24(04):59.

备注/Memo

备注/Memo:
收稿日期:2023-12-04
基金项目:国家自然科学基金项目(51878176,52378140); 福建省住房和城乡建设厅科学技术项目(2018-K-1)
通信作者:廖飞宇(1978-),男,工学博士,教授,博士生导师,E-mail:feiyu.liao@fafu.edu.cn。
Author resume: LIAO Feiyu(1978-), male, PhD, professor, E-mail: feiyu.liao@fafu.edu.cn.
更新日期/Last Update: 2025-07-10