|本期目录/Table of Contents|

[1]郑张玉,程健飞,田水,等.轴压荷载作用下双面叠合混凝土剪力墙受力性能研究[J].建筑科学与工程学报,2025,42(04):43-53.[doi:10.19815/j.jace.2023.11003]
 ZHENG Zhangyu,CHENG Jianfei,TIAN Shui,et al.Study on mechanical behavior of double-faced superposed concrete shear wall under axial compression[J].Journal of Architecture and Civil Engineering,2025,42(04):43-53.[doi:10.19815/j.jace.2023.11003]
点击复制

轴压荷载作用下双面叠合混凝土剪力墙受力性能研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年04期
页码:
43-53
栏目:
建筑结构
出版日期:
2025-07-10

文章信息/Info

Title:
Study on mechanical behavior of double-faced superposed concrete shear wall under axial compression
文章编号:
1673-2049(2025)04-0043-11
作者:
郑张玉1,2,程健飞3,田水3,陈俊达3,谭园4,闫飞1,2
(1. 长江勘测规划设计研究有限责任公司,湖北 武汉 430010; 2. 滨水空间规划设计湖北省工程研究中心,湖北 武汉 430010; 3. 武汉理工大学 土木工程与建筑学院,湖北 武汉 430070; 4. 美好建筑装配科技有限公司,湖北 武汉 430071)
Author(s):
ZHENG Zhangyu1,2, CHENG Jianfei3, TIAN Shui3, CHEN Junda3, TAN Yuan4, YAN Fei1,2
(1. Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, Hubei, China; 2. Hubei Provincial Engineering Research Center for Waterfront Space Planning and Design, Wuhan 430010, Hubei, China; 3. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China; 4. Myhome Prefabricated Building and Technology Co., Ltd., Wuhan 430071, Hubei, China)
关键词:
双面叠合混凝土剪力墙 轴压性能 试验研究 数值模型
Keywords:
double-faced superposed concrete shear wall axial compression performance experimental study numerical model
分类号:
TU375
DOI:
10.19815/j.jace.2023.11003
文献标志码:
A
摘要:
为研究双面叠合混凝土剪力墙的轴心受压性能,对3个双面叠合混凝土剪力墙试件以及1个现浇对比试件进行轴压试验。基于ABAQUS有限元软件建立了精细化数值模型,通过与试验结果进行对比,验证数值模型的准确性,并基于已有的轴心受压承载力理论公式进行了理论计算。结果表明:轴压荷载作用下,现浇和叠合混凝土剪力墙试件均发生脆性破坏; 对于叠合剪力墙试件,叠合面开裂显著影响了预制板和芯层混凝土的协同工作性能; 相较于焊接连接,桁架筋与网片筋采用绑扎连接时试件的极限荷载更大; 桁架筋采用交错摆放形式后,试件的极限荷载有较大提升; 叠合剪力墙的极限承载力随着高厚比的增加而下降; 桁架筋离墙侧面越远,叠合剪力墙的整体性越差,叠合面更容易开裂; 由于叠合试件的整体性较差,导致理论结果偏于不安全。
Abstract:
In order to study the axial compression performance of double-faced superposed concrete shear wall, three double-faced superposed concrete shear wall specimens and one cast-in-place contrast specimen were tested under axial compression. A refined numerical model was established based on ABAQUS finite element software. The accuracy of the numerical model was verified by comparing with the experimental results, and the theoretical calculation was carried out based on the existing theoretical formula of axial compression bearing capacity. The results show that brittle failure occurs in both cast-in-place and superposed concrete shear wall specimens under axial compression load. For the superposed shear wall specimens, the cracking of superposed surface significantly affects the collaborative performance of the precast slab and the core concrete. Compared to welded connections, the ultimate load of specimen is greater when the truss bars and mesh bars are tied together. After adopting a staggered arrangement of truss bars, the ultimate load of specimen is significantly increased. The ultimate bearing capacity of superposed shear walls decreases with the increase of height to thickness ratio. The farther the truss bar is from the side of wall, the poorer the overall integrity of superposed shear wall, and the more likely the superposed surface is to crack. Due to the poor overall integrity of superposed specimens, the theoretical results tend to be unsafe.

参考文献/References:

[1] O'HEGARTY R, KINNANE O. Review of precast concrete sandwich panels and their innovations[J]. Construction and Building Materials, 2020, 233: 117145.
[2]GU Q, WU R D, REN J, et al. Effect of position of non-contact lap splices on in-plane force transmission performance of horizontal joints in precast concrete double-face superposed shear wall structures[J]. Journal of Building Engineering, 2022, 51: 104197.
[3]TULLINI N, MINGHINI F. Grouted sleeve connections used in precast reinforced concrete construc-tion — experimental investigation of a column-to-column joint[J]. Engineering Structures, 2016, 127: 784-803.
[4]GU Q, DONG G, WANG X, et al. Research on pseudo-static cyclic tests of precast concrete shear walls with vertical rebar lapping in grout-filled constrained hole[J]. Engineering Structures, 2019, 189: 396-410.
[5]谷 倩,余 纲,谭 园,等.带构造边缘构件的L形双面叠合剪力墙抗震性能试验研究[J].建筑科学与工程学报,2021,38(5):47-55.
GU Qian, YU Gang, TAN Yuan, et al. Experimental study on seismic behavior of L-shape double-side precast composite shear walls with constructional boundary elements[J]. Journal of Architecture and Civil Engineering, 2021, 38(5): 47-55.
[6]薛伟辰,李 亚,蔡 磊,等.双面叠合混凝土剪力墙平面内和平面外抗震性能研究[J].工程力学,2018,35(5):47-53,142.
XUE Weichen, LI Ya, CAI Lei, et al. In-plane and out-of-plane mechanical behavior of double faced superposed concrete shear walls[J]. Engineering Mechanics, 2018, 35(5): 47-53, 142.
[7]赵作周,王晶秋,郁银泉,等.低轴压比下预制边缘构件双面叠合剪力墙抗震性能试验研究[J].建筑结构学报,2021,42(3):63-71.
ZHAO Zuozhou, WANG Jingqiu, YU Yinquan, et al. Experimental study on seismic behavior of double-superimposed shear walls with prefabricated boundary elements under low axial force ratio[J]. Journal of Building Structures, 2021, 42(3): 63-71.
[8]GU Q, ZHAO D F, TAN Y, et al. Experimental study on L-shaped precast concrete superposed shear walls under quasi-static cyclic loading with different axial compressive load ratios[J]. Engineering Structures, 2022, 254: 113857.
[9]GU Q, ZHAO D F, LI J F, et al. Seismic performance of T-shaped precast concrete superposed shear walls with cast-in-place boundary columns and special boundary elements[J]. Journal of Building Engineering, 2022, 45: 103503.
[10]GU Q, DENG Q, TAN Y, et al. Research on the out-of-plane mechanical performance of double-face superposed shear walls with different horizontal connections[J]. Journal of Building Engineering, 2022, 59: 105157.
[11]EOM T S, PARK E J, LEE S J. Shear behavior of reinforced concrete structural walls under eccentric compression load[J]. ACI Structural Journal, 2019, 117(1): 63-73.
[12]ABBAS A, ADIL M, AHMAD N, et al. Behavior of reinforced concrete sandwiched panels(RCSPs)under blast load[J]. Engineering Structures, 2019, 181: 476-490.
[13]CHEN J, HAMED E, GILBERT R I. Structural performance of concrete sandwich panels under fire[J]. Fire Safety Journal, 2021, 121: 103293.
[14]BENAYOUNE A, SAMAD A A A, ABANG ALI A A, et al. Response of pre-cast reinforced composite sandwich panels to axial loading[J]. Construction and Building Materials, 2007, 21(3): 677-685.
[15]侯和涛,叶海登,马天翔,等.叠合整体式混凝土剪力墙轴心受压性能研究[J].建筑结构学报,2016,37(3):76-85.
HOU Hetao, YE Haideng, MA Tianxiang, et al. Study of integral composite reinforced concrete shear wall subjected to axial loading[J]. Journal of Building Structures, 2016, 37(3): 76-85.
[16]装配式混凝土建筑技术标准:GB/T 51231—2016[S].北京:中国建筑工业出版社,2017.
Technical standard for prefabricated concrete buildings: GB/T 51231—2016[S]. Beijing: China Architecture & Building Press, 2017.
[17]混凝土结构试验方法标准:GB/T 50152—2012[S].北京:中国建筑工业出版社,2012.
Standard for test method of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012.
[18]高层建筑混凝土结构技术规程:JGJ 3—2010[S].北京:中国建筑工业出版社,2011.
Technical specification for concrete structures of tall building: JGJ 3—2010[S]. Beijing: China Architecture & Building Press, 2011.
[19]ABAQUS. Analysis user's manual 6.14[M]. Providence: Dassault Systemes Simulia Corp., 2011.
[20]LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
[21]CHEN A, YOSSEF M, HOPKINS P. A comparative study of different methods to calculate degrees of composite action for insulated concrete sandwich panels[J]. Engineering Structures, 2020, 212: 110423.
[22]钱 凯,谭鑫宇,李 治,等.高温下钢筋混凝土板抗冲击性能及其影响因素[J].工程力学,2023,40(1):132-143,154.
QIAN Kai, TAN Xinyu, LI Zhi, et al. Impact performance and the influence factors of reinforced concrete slabs under high temperatures[J]. Engineering Mechanics, 2023, 40(1): 132-143, 154.
[23]LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
[24]Building code requirements for structural concrete and commentary:ACI 318-08[S]. Farmington Hills:ACI, 2008.
[25]沈小璞,张江山,雷庆关,等.叠合板式剪力墙考虑叠合面摩擦滑移的破坏机理研究[J].建筑结构,2018,48(22):78-84,94.
SHEN Xiaopu, ZHANG Jiangshan, LEI Qingguan, et al. Study on the failure mechanism of laminated plate shear wall considering the friction slip[J]. Building Structure, 2018, 48(22): 78-84, 94.
[26]混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2010.
Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2010.
[27]Building code requirements for reinforced concrete: ACI 318-14[S]. Detroit: American Concrete Institute, 2014.
[28]OBERLENDER G D, EVERARD N J. Investigation of reinforced concrete walls[J]. ACI Journal Proceeding, 1977, 74(6): 256-263.

相似文献/References:

[1]刘向斌,周天华,聂少锋,等.冷弯薄壁型钢开口三肢拼合立柱轴压性能有限元分析[J].建筑科学与工程学报,2011,28(03):119.
 LIU Xiang-bin,ZHOU Tian-hua,NIE Shao-feng,et al.Finite Element Analysis of Cold-formed Thin-walled Steel Three Open Limbs Built-up Columns Under Axial Compression[J].Journal of Architecture and Civil Engineering,2011,28(04):119.
[2]任志刚,张 铭,魏 巍,等.圆端形钢管混凝土中长柱轴压性能[J].建筑科学与工程学报,2020,37(03):18.[doi:10.19815/j.jace.2019.05054]
 REN Zhi-gang,ZHANG Ming,WEI Wei,et al.Axial Compression Performance of RCFST Middle Long Columns[J].Journal of Architecture and Civil Engineering,2020,37(04):18.[doi:10.19815/j.jace.2019.05054]
[3]闫维明,孔令旭,慈俊昌,等.大径宽比钢管混凝土叠合柱轴压试验[J].建筑科学与工程学报,2020,37(06):21.
 YAN Wei-ming,KONG Ling-xu,CI Jun-chang,et al.Experiment on Axial Compression of Concrete Filled Steel Tube Composite Columns with Large Diameter Width Ratio[J].Journal of Architecture and Civil Engineering,2020,37(04):21.
[4]翟梦超,王景全,姚一鸣.织物增强混凝土的纤维协同等代效应对约束混凝土的影响分析[J].建筑科学与工程学报,2021,38(04):110.[doi:10.19815/j.jace.2020.09073]
 ZHAI Meng-chao,WANG Jing-quan,YAO Yi-ming.Influence Analysis of Fiber Synergistic Equivalent Effect of Textile Reinforced Concrete on Confined Concrete[J].Journal of Architecture and Civil Engineering,2021,38(04):110.[doi:10.19815/j.jace.2020.09073]
[5]张慧洁,胡 晨,王静峰,等.部分包覆钢-轻骨料混凝土组合短柱轴压性能数值分析[J].建筑科学与工程学报,2022,39(05):53.[doi:10.19815/j.jace.2021.08085]
 ZHANG Hui-jie,HU Chen,WANG Jing-feng,et al.Numerical Analysis of Axial Compression Behavior of Partially-encased Lightweight Aggregate Concrete Composite Stub Columns[J].Journal of Architecture and Civil Engineering,2022,39(04):53.[doi:10.19815/j.jace.2021.08085]
[6]赵海龙,徐瑞文.型钢混凝土T形柱轴压性能分析[J].建筑科学与工程学报,2023,40(04):60.[doi:10.19815/j.jace.2021.11062]
 ZHAO Hailong,XU Ruiwen.Analysis of axial compression performance of steel reinforced concrete T-shaped column[J].Journal of Architecture and Civil Engineering,2023,40(04):60.[doi:10.19815/j.jace.2021.11062]
[7]杨 博,张亚飞,卢 旦,等.波纹管通孔柱轴压性能和滞回性能数值模拟[J].建筑科学与工程学报,2023,40(05):99.[doi:10.19815/j.jace.2021.11120]
 YANG Bo,ZHANG Yafei,LU Dan,et al.Numerical simulation of axial compression and hysteretic behavior of corrugated pipe through-hole column[J].Journal of Architecture and Civil Engineering,2023,40(04):99.[doi:10.19815/j.jace.2021.11120]
[8]龙 刚,刘永健,朱伟庆,等.变截面圆钢管混凝土短柱轴心受压性能研究[J].建筑科学与工程学报,2023,40(06):45.[doi:10.19815/j.jace.2022.02068]
 LONG Gang,LIU Yongjian,ZHU Weiqing,et al.Axial compression performance of CFST short columns with variable circular cross sections[J].Journal of Architecture and Civil Engineering,2023,40(04):45.[doi:10.19815/j.jace.2022.02068]
[9]滕晓丹,蒙春贵,莫剑锋,等.自应力对圆钢管混凝土短柱轴压性能的影响机理及其预测模型[J].建筑科学与工程学报,2023,40(06):58.[doi:10.19815/j.jace.2022.01049]
 TENG Xiaodan,MENG Chungui,MO Jianfeng,et al.Influence mechanism and prediction model of self-stress on axial compression performance of concrete-filled steel tube short column[J].Journal of Architecture and Civil Engineering,2023,40(04):58.[doi:10.19815/j.jace.2022.01049]
[10]张信贵,张怀,张懿丹,等.钢管-注浆法加固缺陷桩轴压性能研究[J].建筑科学与工程学报,2025,42(04):167.[doi:10.19815/j.jace.2023.11052]
 ZHANG Xingui,ZHANG Huai,ZHANG Yidan,et al.Research on axial compression performance of defective piles reinforced by steel tube-grouting method[J].Journal of Architecture and Civil Engineering,2025,42(04):167.[doi:10.19815/j.jace.2023.11052]

备注/Memo

备注/Memo:
收稿日期:2023-11-01
基金项目:湖北省高校产学研合作后补助基金资助项目(2019280); 长江勘测规划设计研究有限责任公司资助项目(20201h0362)
作者简介:郑张玉(1981-),男,高级工程师,E-mail:zhengzhangyu@cjwsjy.com.cn。
通信作者:程健飞(1996-),男,工学博士研究生,E-mail:chengjf@whut.edu.cn。
Author resumes: ZHENG Zhangyu(1981-),male, senior engineer, E-mail: zhengzhangyu@cjwsjy.com.cn; CHENG Jianfei(1996-), male, doctoral student, E-mail: chengjf@whut.edu.cn.
更新日期/Last Update: 2025-07-10