|本期目录/Table of Contents|

[1]芮瑞,方涵喆,胡向东,等.斜坡自重应力条件下的土拱效应与变形规律研究[J].建筑科学与工程学报,2025,42(04):146-156.[doi:10.19815/j.jace.2023.11045]
 RUI Rui,FANG Hanzhe,HU Xiangdong,et al.Research on soil arching effect and deformation law under condition of self-weight stress of slope[J].Journal of Architecture and Civil Engineering,2025,42(04):146-156.[doi:10.19815/j.jace.2023.11045]
点击复制

斜坡自重应力条件下的土拱效应与变形规律研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年04期
页码:
146-156
栏目:
岩土工程
出版日期:
2025-07-15

文章信息/Info

Title:
Research on soil arching effect and deformation law under condition of self-weight stress of slope
文章编号:
1673-2049(2025)04-0146-11
作者:
芮瑞1,2,方涵喆1,胡向东3,伊坤3,刘吉3,贺世开1,崔程煜1
(1. 武汉理工大学 土木工程与建筑学院,湖北 武汉 430070; 2. 武汉理工大学 三亚科教创新园,海南 三亚 572025; 3. 中国铁建港航局集团有限公司第一工程分公司,广东 广州 511400)
Author(s):
RUI Rui1,2, FANG Hanzhe1, HU Xiangdong3, YI Kun3, LIU Ji3, HE Shikai1, CUI Chengyu1
(1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China; 2. Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572025, Hainan, China; 3. The First Engineering Branch of China Railway Construction Corporation Harbour & Channel Engineering Bureau Group Co., Ltd., Guangzhou 511400, Guangdong, China)
关键词:
土拱效应 变形规律 偏压条件 活动门试验 离散元
Keywords:
soil arching effect deformation law eccentric loading condition trapdoor test DEM
分类号:
TU433
DOI:
10.19815/j.jace.2023.11045
文献标志码:
A
摘要:
采用阵列式活动门装置开展了偏压(斜坡)条件下的活动门试验,通过粒子图像测速技术得到了填料断面全场位移与剪应变,并通过载荷计准确测得了活动门与周边固定部分随活动门下沉过程的竖向荷载变化。采用离散元(DEM)数值模拟探讨了活动门距坡脚距离的影响规律,对活动门下沉过程中填料颗粒旋转、主应力偏转与力链分布等细观力学机制进行了分析。结果表明:活动门下沉过程中,荷载更迅速地转移到坡脚侧,随后更多地转移到深埋侧,最终两侧荷载增量基本相等; 填料中坡脚侧滑移面先于深埋侧形成,两侧滑移面张开角度基本恒定,但深埋侧会随活动门下沉量增加形成新的向外侧扩展的滑移面; 偏压条件下的地基反应曲线与传统活动门试验类似,活动门越靠近深埋侧,土拱效应发挥越稳定; 当活动门离坡脚距离达到2倍活动门宽度时,土拱效应发挥基本保持不变; 随着活动门的下沉,填料中形成了以活动门两侧为拱脚的强力链网络结构。
Abstract:
Array-type trapdoor apparatus was used to conduct trapdoor tests under eccentric loading(slope)conditions. The full field displacement and shear strain of the filling section were obtained through particle image velocimetry technology, and the vertical load changes of the trapdoor and surrounding fixed parts during the sinking process of trapdoor were accurately measured through a load gauge. The influence law of the distance between the trapdoor and the foot of slope was explored through discrete element method(DEM)numerical simulation, and the micro mechanical mechanisms such as the rotation of filling particles, the deviation of principal stress, and the distribution of force chain during the sinking process of trapdoor were analyzed. The results show that during the sinking process of trapdoor, the load is transferred more quickly to the foot of slope, and then more to the deeply buried side, ultimately resulting in a similar increase in load on both sides. The sliding surface at the foot of slope in the filling material is formed earlier than the deeply buried side, and the opening angle of the sliding surfaces on both sides is basically constant. However, the deeply buried side will form a new sliding surface that extends outward as the settlement of the trapdoor increases. The response curve of the foundation under eccentric conditions is similar to the traditional trapdoor test, where the closer the trapdoor is to the deeply buried side, the more stable the soil arching effect becomes. When the distance between the trapdoor and the foot of slope reaches twice the width of trapdoor, the soil arching effect remains basically unchanged. As the trapdoor sinks, a strong force chain network structure with arch feet on both sides of the trapdoor is formed in the filling material.

参考文献/References:

[1] 高成雷,凌建明,杜 浩,等.拓宽路堤下带帽刚性疏桩复合地基应力特性现场试验研究[J].岩石力学与工程学报,2008,27(2):354-360.
GAO Chenglei, LING Jianming, DU Hao, et al. In-situ test on stress characteristics of composite foundation with sparse T-shaped rigid piles under widening embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 354-360.
[2]於 慧,丁选明,孔纲强,等.高速公路拓宽工程现浇X形桩与圆形桩变形特性数值模拟对比分析[J].岩土工程学报,2013,35(增2):170-176.
YU Hui, DING Xuanming, KONG Gangqiang, et al. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 170-176.
[3]吕伟华,缪林昌,王 非,等.桩-网加固拓宽路堤土拱效应试验研究[J].岩土力学,2013,34(8):2316-2322.
LÜ Weihua, MIAO Linchang, WANG Fei, et al. Experimental study of soil arching of geogrid-reinforced and pile-supported widening embankment[J]. Rock and Soil Mechanics, 2013, 34(8): 2316-2322.
[4]钱劲松,凌建明.路基拓宽工程中桩承式加筋路堤处理的数值分析[J].交通运输工程学报,2008,8(5):67-71.
QIAN Jinsong, LING Jianming. Numerical analysis of application for pile-supported reinforced embankment in subgrade widening engineering[J]. Journal of Traffic and Transportation Engineering, 2008, 8(5): 67-71.
[5]陈达章,陈天翼,牟太平,等.软土桩基上拓宽路堤的变形破坏离心模型试验[J].建筑科学与工程学报,2021,38(6):11-17.
CHEN Dazhang, CHEN Tianyi, MOU Taiping, et al. Centrifugal modeling test on deformation and failure behavior of widening embankment on soft soil with pile foundation[J]. Journal of Architecture and Civil Engineering, 2021, 38(6): 11-17.
[6]代树林,李彦明,郭海洋,等.回头沟隧道偏压段围岩与初衬间压力监测结果分析[J].路基工程,2018(2):107-111.
DAI Shulin, LI Yanming, GUO Haiyang, et al. Analysis of pressure monitoring results between surrounding rock and early lining of bias section of Huitougou tunnel[J]. Subgrade Engineering, 2018(2): 107-111.
[7]王传智.新安岭浅埋偏压隧道围岩稳定性评价及衬砌技术研究[D].西安:西安科技大学,2013.
WANG Chuanzhi. Study on stability evaluation of surrounding rock of Xin'an ridge shallow-buried unsymmetrical tunnel and its lining technology[D]. Xi'an: Xi'an University of Science and Technology, 2013.
[8]干啸洪,陈立平,张素磊,等.浅埋偏压隧道地表沉降规律及其预测方法[J].现代隧道技术,2019,56(2):78-84.
GAN Xiaohong, CHEN Liping, ZHANG Sulei, et al. On law of ground settlements and its prediction method for the shallow-buried tunnel under asymmetrical pressures[J]. Modern Tunnelling Technology, 2019, 56(2): 78-84.
[9]张永利,黄 为,张艳君.倾斜地表下隧道开挖引起的三维地表沉降计算[J].西南大学学报(自然科学版),2018,40(8):147-153.
ZHANG Yongli, HUANG Wei, ZHANG Yanjun. Calculation of three-dimensional surface settlement caused by tunnel excavation under sloping ground[J]. Journal of Southwest University(Natural Science Edition), 2018, 40(8): 147-153.
[10]KARL T. Theoretical soil mechanics[M]. New York: John Wiley & Sons, 1943.
[11]JENCK O, DIAS D, KASTNER R. Three-dimensional numerical modeling of a piled embankment[J]. International Journal of Geomechanics, 2009, 9(3): 102-112.
[12]CHEN Y M, CAO W P, CHEN R P. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments[J]. Geotextiles and Geomembranes, 2008, 26(2): 164-174.
[13]IGLESIA G R, EINSTEIN H H, WHITMAN R V. Investigation of soil arching with centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013005.
[14]RUI R, VAN TOL A F, XIA Y Y, et al. Investigation of soil-arching development in dense sand by 2D model tests[J]. Geotechnical Testing Journal, 2016, 39(3): 20150130.
[15]RUI R, VAN TOL A F, XIA X L, et al. Evolution of soil arching; 2D DEM simulations[J]. Computers and Geotechnics, 2016, 73: 199-209.
[16]TRAN Q A, VILLARD P, DIAS D. Discrete and continuum numerical modeling of soil arching between piles[J]. International Journal of Geomechanics, 2019, 19(2):04018195.
[17]LAI H J, ZHENG J J, ZHANG J, et al. DEM analysis of “soil”-arching within geogrid-reinforced and unreinforced pile-supported embankments[J]. Computers and Geotechnics, 2014, 61: 13-23.
[18]鲍 宁,魏 静,陈建峰.桩承式路堤土拱效应三维离散元分析[J].岩土力学,2020,41(增1):347-354.
BAO Ning, WEI Jing, CHEN Jianfeng. Three dimensional discrete element analysis of soil arching in piled embankment[J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[19]WHITE D J, TAKE W A, BOLTON M D. Measuring soil deformation in geotechnical models using digital images and PIV analysis[C]//CRC. Proceedings of the 10th International Conference on Computer Methods and Advances in Geomechanics. Boca Raton: CRC Press, 2001: 997-1002.
[20]HAN J, WANG F, AL-NADDAF M, et al. Progressive development of two-dimensional soil arching with displacement[J]. International Journal of Geomechanics, 2017, 17(12): 04017112.
[21]LAI H J, ZHENG J J, CUI M J, et al. “Soil arching” for piled embankments: insights from stress redistribution behaviour of DEM modelling[J]. Acta Geotechnica, 2020, 15(8): 2117-2136.
[22]BADAKHSHAN E, NOORZAD A, BOUAZZA A, et al. A 3D-DEM investigation of the mechanism of arching within geosynthetic-reinforced piled embankment[J]. International Journal of Solids and Structures, 2020, 187: 58-74.
[23]LIU J Q, XU Z Y, ZHOU S. On the external failure surface in PSEs: numerical and theoretical methods[J]. Advances in Civil Engineering, 2022, 2022(1): 7218904.
[24]CHEN R P, LIU Q W, WU H N, et al. Effect of particle shape on the development of 2D soil arching[J]. Computers and Geotechnics, 2020, 125: 103662.
[25]崔晓艳,庄 妍,张希栋,等.循环荷载下桩承式路堤中土拱效应动力折减系数离散元研究[J].湖南大学学报(自然科学版),2022,49(9):164-172.
CUI Xiaoyan, ZHUANG Yan, ZHANG Xidong, et al. Discrete element analysis on dynamic reduction coefficient of soil arching effect in pile supported embankment under cyclic load[J]. Journal of Hunan University(Natural Sciences), 2022, 49(9): 164-172.
[26]郑俊杰,赖汉江,董友扣,等.桩承式路堤承载特性颗粒流细观模拟[J].华中科技大学学报(自然科学版),2012,40(11):43-47.
ZHENG Junjie, LAI Hanjiang, DONG Youkou, et al. Mesomechanical analysis of bearing characteristics of pile-supported embankment with particle flow code[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2012, 40(11): 43-47.

相似文献/References:

[1]陈仁朋,刘骐炜,姜正晖.桩承式路堤中的静动力土拱效应[J].建筑科学与工程学报,2017,34(05):31.
 CHEN Ren-peng,LIU Qi-wei,JIANG Zheng-hui.Static and Dynamic Soil Arching Effect of Pile-supported Embankments[J].Journal of Architecture and Civil Engineering,2017,34(04):31.
[2]朱彦鹏,何江飞,李军.黄土公路隧道浅埋段管棚注浆支护机理及监测分析[J].建筑科学与工程学报,2011,28(01):11.
 ZHU Yan-peng,HE Jiang-fei,LI Jun.Support Mechanism and Monitoring Analysis of Pipe Roof Grouting for Loess Highway Tunnel in Shallow-buried Section[J].Journal of Architecture and Civil Engineering,2011,28(04):11.
[3]张 海,蔡玉军.斜交异形箱涵整体结构受力性能及变形规律[J].建筑科学与工程学报,2020,37(02):91.[doi:10.19815/j.jace.2019.07061]
 ZHANG Hai,CAI Yu-Jun.Mechanical Property and Deformation Law of Integral Structure of Oblique Special-shaped Box Culvert[J].Journal of Architecture and Civil Engineering,2020,37(04):91.[doi:10.19815/j.jace.2019.07061]
[4]陶 勇,吕所章,杨 平,等.南京江北新区相邻深浅基坑开挖时序优化研究[J].建筑科学与工程学报,2021,38(06):108.[doi:10.19815/j.jace.2021.09021]
 TAO Yong,LYU Suo-zhang,YANG Ping,et al.Study on Excavation Time Sequence Optimization of Adjacent Deep and Shallow Foundation Pits in Jiangbei New District of Nanjing[J].Journal of Architecture and Civil Engineering,2021,38(04):108.[doi:10.19815/j.jace.2021.09021]
[5]曹 军,王康宇,骆大江.循环荷载作用下土拱效应的离散元研究[J].建筑科学与工程学报,2023,40(03):152.[doi:10.19815/j.jace.2021.11032]
 CAO Jun,WANG Kangyu,LUO Dajiang.Discrete element analysis of soil arching effect under cyclic loading[J].Journal of Architecture and Civil Engineering,2023,40(04):152.[doi:10.19815/j.jace.2021.11032]
[6]赵壮福,朱彦鹏,叶帅华.黄土高填方地基沉降变形规律及影响因素分析[J].建筑科学与工程学报,2023,40(03):161.[doi:10.19815/j.jace.2022.01037]
 ZHAO Zhuangfu,ZHU Yanpeng,YE Shuaihua.Analysis on settlement deformation law and influencing factors of loess high fill foundation[J].Journal of Architecture and Civil Engineering,2023,40(04):161.[doi:10.19815/j.jace.2022.01037]
[7]李吉林,尹爱月,魏焕卫,等.开挖宽度对异形基坑L形转角区支护结构变形影响研究[J].建筑科学与工程学报,2024,41(04):159.[doi:10.19815/j.jace.2022.05017]
 LI Jilin,YIN Aiyue,WEI Huanwei,et al.Study on influence of excavation width on deformation of supporting structure in L-shaped corner area of shaped foundation pit[J].Journal of Architecture and Civil Engineering,2024,41(04):159.[doi:10.19815/j.jace.2022.05017]

备注/Memo

备注/Memo:
收稿日期:2023-11-12
基金项目:国家自然科学基金项目(42272315); 国家级大学生创新创业训练计划项目(202210497387)
作者简介:芮 瑞(1981-),男,工学博士,教授,博士生导师,E-mail:r.rui@whut.edu.cn。
Author resume: RUI Rui(1981-), male, PhD, professor, E-mail: r.rui@whut.edu.cn.
更新日期/Last Update: 2025-07-10