|本期目录/Table of Contents|

[1]岳夏冰,肖天鹏,陈炳旭,等.洪积粉砂土动力特性研究[J].建筑科学与工程学报,2025,42(04):157-166.[doi:10.19815/j.jace.2023.12096]
 YUE Xiabing,XIAO Tianpeng,CHEN Bingxu,et al.Study on dynamic characteristics of alluvial silty sand[J].Journal of Architecture and Civil Engineering,2025,42(04):157-166.[doi:10.19815/j.jace.2023.12096]
点击复制

洪积粉砂土动力特性研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年04期
页码:
157-166
栏目:
岩土工程
出版日期:
2025-07-10

文章信息/Info

Title:
Study on dynamic characteristics of alluvial silty sand
文章编号:
1673-2049(2025)04-0157-10
作者:
岳夏冰1,肖天鹏1,陈炳旭2,王志丰1
(1.长安大学 公路学院,陕西 西安 710064; 2. 中铁上海设计院集团有限公司,上海 200070)
Author(s):
YUE Xiabing1, XIAO Tianpeng1, CHEN Bingxu2, WANG Zhifeng1
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. China Railway Shanghai Design Institute Group Corporation Limited, Shanghai 200070, China)
关键词:
洪积粉砂土 累积塑性应变 动三轴试验 动弹性模量 动强度
Keywords:
alluvial silty sand cumulative plastic strain dynamic triaxial test dynamic elasticity modulus dynamic strength
分类号:
TU411
DOI:
10.19815/j.jace.2023.12096
文献标志码:
A
摘要:
为探究洪积粉砂土填料的动力特性,考虑动应力幅值、含水率、围压和频率的影响进行了洪积粉砂土填料动三轴试验,研究了洪积粉砂土试样在不同影响因素下的动力变形规律,并建立了动弹性模量与动应变、动强度与循环次数的拟合曲线模型。结果表明:随着循环次数的增加,洪积粉砂土的累积塑性应变逐渐增大,加载初期累积塑性应变积累较快,但1 000次循环后保持相对稳定; 动弹性模量随着塑性变形的增加而发生衰减,围压和含水率对洪积粉砂土的动弹性模量影响较大,当围压越大且含水率接近最佳含水率时,动弹性模量越大; 阻尼比随着应变的增加呈非线性增长; 洪积粉砂土的动强度与围压呈正相关关系,而与循环次数呈负相关关系。
Abstract:
In order to explore the dynamic characteristics of alluvial silty sand filler, the dynamic triaxial test of alluvial silty sand filler was carried out considering the influence of dynamic stress amplitude, water content, confining pressure and frequency. The dynamic deformation law of alluvial silty sand samples under different influencing factors was studied, and the fitting curve models of dynamic elastic modulus and dynamic strain, dynamic strength and cycle times were established. The results show that with the increase of the number of cycles, the cumulative plastic strain of alluvial silty sand increases gradually, and the cumulative plastic strain accumulates rapidly at the initial stage of loading, but remains relatively stable after 1 000 cycles. The dynamic elastic modulus decreases with the increase of plastic deformation. The confining pressure and water content have a great influence on the dynamic elastic modulus of alluvial silty sand. When the confining pressure is larger and the water content is close to optimal water content, the dynamic elastic modulus is larger. The damping ratio increases nonlinearly with the increase of strain. The dynamic strength of alluvial silty sand is positively correlated with confining pressure and negatively correlated with the number of cycles.

参考文献/References:

[1] KOLMOGOROV G, KYCHKIN V I, ESIPENKO I. Dynamic response of pavement subjected to moving load[J]. Structural Mechanics of Engineering Constructions and Buildings, 2015(5): 39-47.
[2]李新明,路广远,张浩扬,等.石灰偏高岭土改良粉砂土强度特性与微观机理[J].建筑材料学报,2021,24(3):648-655.
LI Xinming, LU Guangyuan, ZHANG Haoyang, et al. Strength characteristics and micro-mechanism of lime-metakaolin modified silty soil[J]. Journal of Building Materials, 2021, 24(3): 648-655.
[3]衣兰涛.浅谈粉砂土填筑路基施工质量分析及控制措施[J].建筑工人,2024,45(8):36-39.
YI Lantao. Discussion on construction quality analysis and control measures of silty sand filling subgrade[J]. Builders' Monthly, 2024, 45(8): 36-39.
[4]昝雷娜.水泥稳定粉砂土路基的应用技术分析[J].交通世界,2024(16):56-58.
ZAN Leina. Application technology analysis of cement stabilized silty sand subgrade[J]. Transpo World, 2024(16): 56-58.
[5]何 进,刘树阁,杨广庆.粉砂土路基施工质量GeoGauge检测有效性分析[J].工程建设与设计,2022(21):62-64.
HE Jin, LIU Shuge, YANG Guangqing. Effectiveness analysis of GeoGauge detection in silt soil subgrade[J]. Construction & Design for Engineering, 2022(21): 62-64.
[6]郭 昆.粉砂填筑路基施工工艺研究[J].住宅与房地产,2021(24):193-194.
GUO Kun. Study on construction technology of silt filling subgrade[J]. Housing and Real Estate, 2021(24): 193-194.
[7]ZHANG Q, LENG W, ZHAI B, et al. Evaluation of critical dynamic stress and accumulative plastic strain of an unbound granular material based on cyclic triaxial tests[J]. Materials, 2021, 14(19): 5722.
[8]倪雪倩,叶 斌.砂土液化后液-固相变机理的单元试验与模拟[J].同济大学学报(自然科学版),2023,51(1):16-22.
NI Xueqian, YE Bin. Mechanical behavior and theoretical simulation of post-liquefied sand in fluid-solid transition process[J]. Journal of Tongji University(Natural Science), 2023, 51(1): 16-22.
[9]娄乾星,陶铁军,田兴朝,等.基于HJC本构模型的石灰岩冲击破坏形态数值模拟方法研究[J].爆破,2022,39(4):71-79.
LOU Qianxing, TAO Tiejun, TIAN Xingchao, et al. Research on numerical simulation method of limestone impact failure based on HJC constitutive model[J]. Blasting, 2022, 39(4): 71-79.
[10]翁 磊,张皓量,张 勇,等.低温下饱水粉砂岩的动态力学特性及本构模型研究[J].应用力学学报,2022,39(6):1096-1107,1134.
WENG Lei, ZHANG Haoliang, ZHANG Yong, et al. Dynamic mechanical properties and the constitutive models of the water-saturated siltstones under frozen conditions[J]. Chinese Journal of Applied Mechanics, 2022, 39(6): 1096-1107, 1134.
[11]NI J, INDRARATNA B, GENG X Y, et al. Model of soft soils under cyclic loading[J]. International Journal of Geomechanics, 2015, 15(4): 04014067.
[12]田小革,李光耀,窦文利,等.干湿循环和动载作用下粉砂土累积变形研究[J].铁道工程学报,2023,40(9):1-7,15.
TIAN Xiaoge, LI Guangyao, DOU Wenli, et al. Study on cumulative deformation of silty soil under dry-wet cycle and dynamic load[J]. Journal of Railway Engineering Society, 2023, 40(9): 1-7, 15.
[13]黄窈婷.高水位低路堤饱和粉砂土路基动三轴试验研究[D].南宁:广西大学,2017.
HUANG Yaoting. Dynamic triaxial test research of saturated silt soil subgrade under the structure of low embankment with high water level[D]. Nanning: Guangxi University, 2017.
[14]董正方,王仁辉,曹献伟,等.黄泛区粉砂土动强度与抗液化强度试验研究[J].地震工程学报,2021,43(1):162-168,186.
DONG Zhengfang, WANG Renhui, CAO Xianwei, et al. Experimental study of dynamic and anti-liquefaction strengths of silty sand in Yellow River flood area[J]. China Earthquake Engineering Journal, 2021, 43(1): 162-168, 186.
[15]来淑娜.地铁荷载下杭州饱和粉砂土动力特性试验研究[D].杭州:浙江工业大学,2013.
LAI Shuna. Research on dynamic properties of Hangzhou's saturated silty sands under metro vibration loading[D]. Hangzhou: Zhejiang University of Technology, 2013.
[16]孟凡丽,吕 筱,来淑娜.循环荷载下杭州粉砂土动孔压模型研究[J].浙江工业大学学报,2016,44(1):67-71.
MENG Fanli, LÜ Xiao, LAI Shuna. Study on the model of dynamic pore water pressure in silt soil in Hangzhou under cyclic loading[J]. Journal of Zhejiang University of Technology, 2016, 44(1): 67-71.
[17]张 博.河南开封地区粉砂土动力特性共振柱试验研究[D].开封:河南大学,2019.
ZHANG Bo. Experimental study on resonance column of dynamic characteristics of silty sand in Henan Kaifeng area[D]. Kaifeng: Henan University, 2019.
[18]MONKUL M M, YAMAMURO J A. Influence of silt size and content on liquefaction behavior of sands[J]. Canadian Geotechnical Journal, 2011, 48(6): 931-942.
[19]董正方,翟鹏飞,曾繁凯,等.黄泛区粉砂土动剪切模量和阻尼比试验研究[J].河南大学学报(自然科学版),2020,50(3):332-340.
DONG Zhengfang, ZHAI Pengfei, ZENG Fankai, et al. Experimental study on dynamic shear modulus and damping ratio of silty soil in the Yellow River flooded area[J]. Journal of Henan University(Natural Science), 2020, 50(3): 332-340.
[20]王 勇,王艳丽.细粒含量对饱和砂土动弹性模量与阻尼比的影响研究[J].岩土力学,2011,32(9):2623-2628.
WANG Yong, WANG Yanli. Study of effects of fines content on dynamic elastic modulus and damping ratio of saturated sand[J]. Rock and Soil Mechanics, 2011, 32(9): 2623-2628.
[21]胡小荣,蔡晓锋,李春博,等.南昌地铁饱和含泥砂土动力特性模拟分析[J].地下空间与工程学报,2021,17(增1):157-173,195.
HU Xiaorong, CAI Xiaofeng, LI Chunbo, et al. Numerical simulations of dynamic characteristics for saturated compacted clayey sands in Nanchang metro[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 157-173, 195.
[22]周金领,赵 杰,王桂萱,等.地基土粉砂层动力特性分析试验研究[J].防灾减灾学报,2011,27(2):1-4.
ZHOU Jinling, ZHAO Jie, WANG Guixuan, et al. Laboratory study on dynamic properties of silty sand[J]. Journal of Disaster Prevention and Reduction, 2011, 27(2): 1-4.
[23]崔高航,席 晨,程 卓,等.粉煤灰掺量对含黏粒粉砂土力学性能影响[J].科学技术与工程,2021,21(34):14688-14695.
CUI Gaohang, XI Chen, CHENG Zhuo, et al. Influence of fly ash content on mechanical properties of clay-containing silt soil[J]. Science Technology and Engineering, 2021, 21(34): 14688-14695.
[24]王晶晶.改良粉砂土路基动力特性研究[D].开封:河南大学,2019.
WANG Jingjing. Study on dynamic characteristics of improved silty soil subgrade[D]. Kaifeng: Henan University, 2019.
[25]张云龙,周刘光,王 静,等.冻融对粉砂土力学特性及路堤边坡稳定性的影响[J].吉林大学学报(工学版),2019,49(5):1531-1538.
ZHANG Yunlong, ZHOU Liuguang, WANG Jing, et al. Effects of freeze-thaw cycles on mechanical properties of silty sand and subgrade slope stability[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1531-1538.
[26]孙 静,公茂盛,熊宏强,等.冻融循环对粉砂土动力特性影响的试验研究[J].岩土力学,2020,41(3):747-754.
SUN Jing, GONG Maosheng, XIONG Hongqiang, et al. Experimental study of the effect of freeze-thaw cycles on dynamic characteristics of silty sand[J]. Rock and Soil Mechanics, 2020, 41(3): 747-754.
[27]朱成浩.季冻区沿江粉砂动力学特性试验研究[D].哈尔滨:东北林业大学,2021.
ZHU Chenghao. Experimental study of the dynamic characteristics of silt along the river in the seasonal frozen area[D]. Harbin: Northeast Forestry University, 2021.
[28]郭婷婷.固结比对粉质粘土动力学特性影响的试验研究[J].地球物理学进展,2016,31(6):2729-2734.
GUO Tingting. Testing study of effects of consolidation ratio of soils on dynamic characteristics[J]. Progress in Geophysics, 2016, 31(6): 2729-2734.
[29]刘建坤,曾巧玲,侯永峰.路基工程[M].北京:中国建筑工业出版社,2006.
LIU Jiankun, ZENG Qiaoling, HOU Yongfeng. Subgrade engineering[M]. Beijing: China Architecture & Building Press, 2006.
[30]WERKMEISTER S, DAWSON A R, WELLNER F. Permanent deformation behavior of granular materials and the shakedown concept[J]. Transportation Research Record, 2001, 1757(1): 75-81.
[31]李广信.高等土力学[M].2版.北京:清华大学出版社,2016.
LI Guangxin. Advanced soil mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2016.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-12-17
基金项目:国家重点研发计划项目(211221220042); 陕西省科技创新与攻关项目(2016NY-218)
作者简介:岳夏冰(1987-),女,工学博士,高级工程师,E-mail:yuexb@chd.edu.cn。
Author resume: YUE Xiabing(1987-), female, PhD, senior engineer, E-mail: yuexb@chd.edu.cn.
更新日期/Last Update: 2025-07-10