|本期目录/Table of Contents|

[1]张信贵,张怀,张懿丹,等.钢管-注浆法加固缺陷桩轴压性能研究[J].建筑科学与工程学报,2025,42(04):167-176.[doi:10.19815/j.jace.2023.11052]
 ZHANG Xingui,ZHANG Huai,ZHANG Yidan,et al.Research on axial compression performance of defective piles reinforced by steel tube-grouting method[J].Journal of Architecture and Civil Engineering,2025,42(04):167-176.[doi:10.19815/j.jace.2023.11052]
点击复制

钢管-注浆法加固缺陷桩轴压性能研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年04期
页码:
167-176
栏目:
岩土工程
出版日期:
2025-07-10

文章信息/Info

Title:
Research on axial compression performance of defective piles reinforced by steel tube-grouting method
文章编号:
1673-2049(2025)04-0167-10
作者:
张信贵1,张怀1,张懿丹2,罗冲3,韩伟2,严利娥1,纪天骄4
(1. 广西大学 土木建筑工程学院,广西 南宁 530004; 2. 广西大学设计院有限公司,广西 南宁 530007; 3. 中煤(广西)地质工程有限公司,广西 南宁 530004; 4. 中国市政工程西北设计研究院有限公司,甘肃 兰州 730099)
Author(s):
ZHANG Xingui1, ZHANG Huai1, ZHANG Yidan2, LUO Chong3, HAN Wei2, YAN Li'e1, JI Tianjiao4
(1. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, Guangxi, China; 2. Guangxi University Design Institute Co., Ltd., Nanning 530007, Guangxi, China; 3. Guangxi Geological Engineering Co., Ltd. of China National Coal Group Corporation, Nanning 530007, Guangxi, China; 4. China State Construction Engineering Corporation, Lanzhou 730099, Gansu, China)
关键词:
缺陷桩加固 钢管-注浆法 轴压性能 试验研究 数值模拟
Keywords:
reinforcement of defective pile steel tube-grouting method axial compression performance experimental study numerical simulation
分类号:
TU473.1
DOI:
10.19815/j.jace.2023.11052
文献标志码:
A
摘要:
针对缺陷桩传统加固方法周期长、损耗高,以注浆加固法为主的微型加固工艺受施工因素影响较大,存在承载力不足的问题,提出钢管-注浆法微型加固方式,并进行室内模型桩轴压试验,考察了钢管比率、缺陷位置对缺陷加固桩极限承载力的影响。基于试验建立准确的有限元模型,总结了混凝土纵向应力分布规律与钢管Mises应力分布规律,对影响缺陷加固桩极限承载力的参数做了进一步分析。结果表明:缺陷加固桩的极限承载力随钢管比率增大而增大,且在钢管比率增大至2.4%时达到最佳; 中部缺陷加固桩与下部缺陷加固桩极限承载力提升幅度最高分别可达完整桩的4.5%与15.8%; 钢管端部混凝土截面的局部应力集中现象随缺陷位置下移而逐渐明显,钢管Mises应力水平的提升分别与钢管比率以及钢管长度有关; 缺陷加固桩极限承载力与注浆体强度成正比,增大钢管壁厚与钢管直径对承载力贡献不大,钢管-注浆法在处理深部缺陷时表现突出,极限承载力提升幅度最高可达31.20%; 建议加固深部缺陷桩时,沿桩身通长设置钢管并将钢管嵌固于桩端稳定持力层内一定深度。
Abstract:
In view of the long period and high loss of the traditional reinforcement method of defective piles, the micro-reinforcement technology based on grouting reinforcement method was greatly affected by construction factors, and there was a problem of insufficient bearing capacity. The micro-reinforcement method of steel tube-grouting method was proposed, and the axial compression test of indoor model piles was carried out. The influences of steel tube ratio and defect location on the ultimate bearing capacity of defective reinforced piles were investigated. Based on the test, an accurate finite element model was established, and the longitudinal stress distribution law of concrete and the Mises stress distribution law of steel tube were summarized. The parameters affecting the ultimate bearing capacity of the defect reinforced pile were further analyzed. The results show that the ultimate bearing capacity of the defect reinforced pile increases with the increase of the steel tube ratio, and reaches the best when the steel tube ratio increases to 2.4%. The ultimate bearing capacity of the mid-section reinforced defect reinforced pile and the lower-section reinforced defect reinforced pile can reach 4.5% and 15.8% of the complete pile respectively. The local stress concentration of the concrete section at the end of the steel tube gradually becomes obvious as the defect position moves down. The increase of the Mises stress level of the steel tube is related to the steel tube ratio and the length of the steel tube, respectively. The ultimate bearing capacity of the defect reinforced pile is proportional to the strength of the grouting body. Increasing the wall thickness of the steel pipe and the diameter of the steel pipe has little contribution to the bearing capacity. The steel pipe-grouting method is prominent in dealing with deep defects, and the ultimate bearing capacity can be increased by up to 31.20%. It is suggested that when reinforcing deep defective piles, steel pipes should be set along the whole length of the pile body and embedded in a certain depth of the stable bearing layer at the pile end.

参考文献/References:

[1] 王奎华,肖 偲,吴君涛,等.饱和土中大直径缺陷桩振动特性研究[J].岩石力学与工程学报,2018,37(7):1722-1730.
WANG Kuihua, XIAO Si, WU Juntao, et al. Dynamic characteristics of defective large diameter piles in saturated soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1722-1730.
[2]WEI L H. Low strain detection and numerical simulation of pile integrity[J]. IOP Conference Series: Earth and Environmental Science, 2021, 825(1): 012026.
[3]WU J T, WANG K H, EL NAGGAR M H. Dynamic response of a defect pile in layered soil subjected to longitudinal vibration in parallel seismic integrity testing[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 168-178.
[4]YANG J, SUN X L, BIAN D C, et al. Large-scale model test for detecting pile defects using the parallel seismic method[J].Soil Dynamics and Earthquake Engineering, 2020, 139: 106300.
[5]MA B H, CAI K, GUO J L, et al. Theoretical analysis on the vertical bearing characteristics of pile foundations containing sediment defects[J]. 2022, 2021(S1): 9150985.
[6]XU M J, NI P P, MEI G X, et al. Load-settlement behaviour of bored piles with loose sediments at the pile tip: experimental, numerical and analytical study[J]. Computers and Geotechnics, 2018, 102: 92-101.
[7]XU M J, NI P P, DING X M, et al. Physical and numerical modelling of axially loaded bored piles with debris at the pile tip[J]. Computers and Geotechnics, 2019, 114: 103146.
[8]王成华,李全辉,张美娜,等.几种缺陷单桩竖向承载性状的现场模型试验研究[J].岩土力学,2014,35(11):3207-3213,3230.
WANG Chenghua, LI Quanhui, ZHANG Meina, et al. Field model test study of vertical bearing behavior of some kinds of single defect piles[J]. Rock and Soil Mechanics, 2014, 35(11): 3207-3213, 3230.
[9]DE FREITAS NETO O, DA CUNHA R P, DE ALBUQUERQUE P J R, et al. Experimental and numerical analyses of a deep foundation containing a single defective pile[J]. Latin American Journal of Solids and Structures, 2020, 17(3): e270.
[10]周德泉,李 健,刘宏利,等.缺陷桩复合地基受压特性模型试验研究[J].建筑结构学报,2020,41(7):131-139.
ZHOU Dequan, LI Jian, LIU Hongli, et al. Model test on compression characteristics of composite foundation with defective piles[J]. Journal of Building Structures, 2020, 41(7): 131-139.
[11]胡新发,柳建新.山地和岩溶地区端承桩质量检测与加固技术研究[J].岩土力学,2011,32(增2):686-692.
HU Xinfa, LIU Jianxin. Study of testing of end-bearing piles and reinforcement technology in mountain and karst area[J]. Rock and Soil Mechanics, 2011, 32(S2): 686-692.
[12]陈秋南,张永兴.桥梁桩基础缺陷复合检测及其加固新方法[J].岩石力学与工程学报,2004,23(20):3518-3522.
CHEN Qiunan, ZHANG Yongxing. Composite examination and new consolidation method for defect of in-situ bored pile of bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3518-3522.
[13]王中文,陈儒发.钻孔灌注桩超深度缺陷压注混凝土处理技术与应用[J].岩土工程学报,2011,33(增2):197-204.
WANG Zhongwen, CHEN Rufa. Treatment technology and application of bored-cast-in-place piles with defect at extreme depth by means of concrete pumping[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 197-204.
[14]黄力勤.钻孔注浆补强加固桩身缺陷[J].探矿工程,1999,26(增1):356-357.
HUANG Liqin. Reinforcement of pile defects by drilling and grouting[J]. Exploration Engineering, 1999, 26(S1): 356-357.
[15]HAN S Y, YUN L. Design and performance of concrete pile strengthened with lengthened steel-tube core: model tests and numerical simulations[J]. Mathematical Problems in Engineering, 2021, 2021(1): 5592296.
[16]李 善,王 凯,邵孟新,等.某在建高层建筑桩基加固技术方案与应用[J].建筑结构,2021,51(8):115-118,131.
LI Shan, WANG Kai, SHAO Mengxin, et al. Technical scheme and application of pile foundation reinforcement for a high-rise building under construction[J]. Building Structure, 2021, 51(8): 115-118, 131.
[17]唐 力.缺陷桩身钢管与注浆加固受力特性试验分析[D].南宁:广西大学,2017.
TANG Li. Defect pile grouting and steel reinforcement stress characteristic test analysis[D].Nanning: Guangxi University, 2017.
[18]建筑基桩检测技术规范:JGJ 106—2014[S].北京:中国建筑工业出版社,2014.
Technical code for testing of building foundation piles: JGJ 106—2014[S]. Beijing: China Architecture & Building Press, 2014.
[19]韩林海.钢管混凝土结构:理论与实践[M].3版.北京:科学出版社, 2016.
HAN Linhai. Concrete filled steel tubular structures: theory and practice[M]. 3rd ed. Beijing: Science Press, 2016.
[20]尧国皇,陈宜言,郭 明,等.内配方钢管的钢管混凝土叠合柱轴压工作性能研究[J].建筑钢结构进展,2013,15(2):26-30.
YAO Guohuang, CHEN Yiyan, GUO Ming, et al. Study on behaviour of concrete-filled square steel tube reinforced concrete columns subjected to axial-compression[J]. Progress in Steel Building Structures, 2013, 15(2): 26-30.
[21]史艳莉,李校孝,王文达,等.双钢管混凝土轴压短柱受力性能研究[J].建筑结构学报,2023,44(7):129-141.
SHI Yanli, LI Xiaoxiao, WANG Wenda, et al. Mechanical behavior of concrete-filled double steel tubular stub columns under axial compression[J]. Journal of Building Structures, 2023, 44(7): 129-141.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-11-16
基金项目:广西重点研发计划项目(桂科AB22035011); 广西科技重大专项(桂科AA23073005); 中化地质矿山总局项目(ZHTD202101); 广西高校中青年教师科研基础能力提升项目(2022KY1162); 广西壮族自治区住房和城乡建设厅项目(桂建科[2022]1号)
作者简介:张信贵(1965-),男,工学博士,教授,博士生导师,E-mail:xgzhangchn@foxmail.com。
通信作者:张懿丹(1985-),女,工程师,E-mail:yidanzhang1985@outlook.com。
Author resumes: ZHANG Xingui(1965-), male, PhD, professor, E-mail: xgzhangchn@foxmail.com; ZHANG Yidan(1985-), female, engineer, E-mail: yidanzhang1985@outlook.com.
更新日期/Last Update: 2025-07-10