|本期目录/Table of Contents|

[1]徐丽,杨正熙,马玉宏,等.砌体本构模型研究进展[J].建筑科学与工程学报,2025,42(05):32-44.[doi:10.19815/j.jace.2024.02049]
 XU Li,YANG Zhengxi,MA Yuhong,et al.Research progress on constitutive model of masonry[J].Journal of Architecture and Civil Engineering,2025,42(05):32-44.[doi:10.19815/j.jace.2024.02049]
点击复制

砌体本构模型研究进展(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年05期
页码:
32-44
栏目:
综述
出版日期:
2025-09-30

文章信息/Info

Title:
Research progress on constitutive model of masonry
文章编号:
1673-2049(2025)05-0032-13
作者:
徐丽1,2,杨正熙1,2,马玉宏1,2,周福霖1,2
(1. 广州大学 广东省地震工程与应用技术重点实验室,广东 广州 510405; 2. 广州大学 工程抗震减震与结构安全教育部重点实验室,广东 广州 510405)
Author(s):
XU Li1,2, YANG Zhengxi 1,2, MA Yuhong1,2, ZHOU Fulin1,2
(1. Guangdong Provincial Key Laboratory of Earthquake Engineering and Advanced Technology, Guangzhou University, Guangzhou 510405, Guangdong, China; 2. Key Laboratory of Earthquake Resistance, Earthquake Mitigation and Structural Safety of Ministry of Education, Guangzhou University, Guangzhou 510405, Guangdong, China)
关键词:
砌体结构 本构模型 宏观力学 损伤演化
Keywords:
masonry structure constitutive model macromechanics damage evolution
分类号:
TU501
DOI:
10.19815/j.jace.2024.02049
文献标志码:
A
摘要:
针对砌体本构模型的研究现状和发展趋势进行了系统归纳与分析; 详细阐述了砌体的基本物理性质和主要破坏类型,对比了砌体的不同建模方式,按本构模型的不同建立依据,将均质化砌体本构模型分为基于宏观经验、宏观力学和损伤演化三大类; 总结了砌体历史建筑分析中采用的砌体本构模型,对各种建模方法的理论基础、优点以及不足之处进行了讨论。结果表明:基于宏观经验的本构模型简单实用,但缺乏物理意义,难以准确描述砌体的复杂破坏过程; 基于宏观力学的本构模型具有明确的物理意义,能够较好地反映砌体的力学行为,但参数获取困难,计算复杂度较高; 基于损伤演化的本构模型能够有效描述砌体的破坏全过程,在现代砌体结构抗震分析中具有重要应用价值,但模型参数多,标定过程复杂; 砌体历史建筑分析中多采用简化的本构模型,在保证计算精度的同时兼顾计算效率; 目前砌体本构模型在描述砌体破坏全过程方面仍存在不足,需要进一步研究更加准确、实用的本构模型,并建立相应的参数确定方法和数值实现技术。
Abstract:
A comprehensive review and analysis of the current state and development trends of constitutive models for masonry structures was presented. The basic physical properties and main failure modes of masonry were elaborated in detail, and different modeling approaches for masonry were compared. The homogenized masonry constitutive models were systematically categorized into three types based on their theoretical foundations, including macro-empirical models, macro-mechanical models, and damage evolution models. The constitutive models adopted in the analysis of historic masonry buildings were summarized, and the theoretical basis, advantages, and limitations of various modeling approaches were discussed. The results show that the macro-empirical constitutive models are simple and practical but lack physical meaning and cannot accurately describe the complex failure processes of masonry. The macro-mechanical constitutive models have clear physical significance and can better reflect the mechanical behavior of masonry, but parameter identification is difficult and computational complexity is high. The damage evolution based constitutive models can effectively describe the complete failure process of masonry and have important application value in seismic analysis of modern masonry structures, but they involve numerous parameters with complex calibration procedures. The simplified constitutive models are commonly adopted in the analysis of historic masonry buildings to balance computational accuracy and efficiency. The current constitutive models still have limitations in describing the complete failure process of masonry, requiring further research on more accurate and practical constitutive models, along with the establishment of corresponding parameter determination methods and numerical implementation techniques.

参考文献/References:

[1] 施楚贤.砌体结构[M].4版.北京:中国建筑工业出版社,2017.
SHI Chuxian. Masonry structure[M]. 4th ed. Beijing: China Architecture & Building Press, 2017.
[2]LOURENCO P B. Computational strategies for masonry structures[D]. Delft: Delft University of Technology, 1996.
[3]刘立鹏,唐岱新.无筋砌体材料本构模型述评[J].哈尔滨工业大学学报,2004,36(9):1256-1259.
LIU Lipeng, TANG Daixin. Constitutive modeling for unreinforced masonry materials[J]. Journal of Harbin Institute of Technology, 2004, 36(9): 1256-1259.
[4]D'ALTRI A M, SARHOSIS V, MILANI G, et al. Modeling strategies for the computational analysis of unreinforced masonry structures:review and classification[J]. Archives of Computational Methods in Engineering, 2020, 27(4): 1153-1185.
[5]FACCONI L, MINELLI F, VECCHIO F J. Predicting uniaxial cyclic compressive behavior of brick masonry: new analytical model[J]. Journal of Structural Engineering, 2018, 144(2): 04017213.
[6]刘立鹏,翟希梅,张连振,等.砌体材料的应力-应变关系[J].低温建筑技术,2007,29(6):63-65.
LIU Lipeng, ZHAI Ximei, ZHANG Lianzhen, et al. A survey on constitutive law of masonry[J]. Low Temperature Architecture Technology, 2007, 29(6): 63-65.
[7]李 妍,孟广伟,尹新生,等.砌体本构关系的研究进展[J].吉林建筑工程学院学报,2009,26(4):5-8.
LI Yan, MENG Guangwei, YIN Xinsheng, et al. Summarized on research achievements of constitutive relationship of masonry[J]. Journal of Jilin Institute of Architecture & Civil Engineering, 2009, 26(4): 5-8.
[8]刘桂秋,颜友清,施楚贤.砌体受压本构关系统一模型的研究[J].湖南大学学报(自然科学版),2009,36(11):6-9.
LIU Guiqiu, YAN Youqing, SHI Chuxian. Research on the unified model of the compressive constitutive relations of masonry[J]. Journal of Hunan University(Natural Sciences), 2009, 36(11): 6-9.
[9]董广萍,杨卫忠,樊 濬.砌体本构关系的研究新进展[J].河南科学,2016,34(1):50-54.
DONG Guangping, YANG Weizhong, FAN Jun. Recent research development of masonry constitutive relation[J]. Henan Science, 2016, 34(1): 50-54.
[10]LIU X J, LIU L X, WANG Y M. Based on experiment of constitutive model of load-bearing insulation masonry[J]. Applied Mechanics and Materials, 2012, 204-208: 1089-1093.
[11]鲁园春.轴心受压砖砌体的试验与研究[D].长沙:湖南大学,2005.
LU Yuanchun. The experiment and research on axial compression brick masonry[D]. Changsha: Hunan University, 2005.
[12]AUGENTI N, PARISI F. Constitutive models for tuff masonry under uniaxial compression[J]. Journal of Materials in Civil Engineering, 2010, 22(11): 1102-1111.
[13]PARISI F, AUGENTI N. Assessment of unreinforced masonry cross sections under eccentric compression accounting for strain softening[J]. Construction and Building Materials, 2013, 41: 654-664.
[14]OUYANG J, WU F B, LÜ W R, et al. Prediction of compressive stress-strain curves of grouted masonry[J]. Construction and Building Materials, 2019, 229: 116826.
[15]AVOSSA A M, MALANGONE P. Seismic performance assessment of masonry structures with a modified “concrete” model[J]. Bulletin of Earthquake Engineering, 2015, 13(9): 2693-2718.
[16]ADDESSI D, MARFIA S, SACCO E. A plastic nonlocal damage model[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(13/14): 1291-1310.
[17]GATTA C, ADDESSI D, VESTRONI F. Static and dynamic nonlinear response of masonry walls[J]. International Journal of Solids and Structures, 2018, 155: 291-303.
[18]GRZYB K, JASINSKI R. Parameter estimation of a homogeneous macromodel of masonry wall made of autoclaved aerated concrete based on standard tests[J]. Structures, 2022, 38: 385-401.
[19]KARAPITTA L, MOUZAKIS H, CARYDIS P. Explicit finite-element analysis for the in-plane cyclic behavior of unreinforced masonry structures[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(2): 175-193.
[20]CALDERINI C, LAGOMARSINO S. Continuum model for in-plane anisotropic inelastic behavior of masonry[J]. Journal of Structural Engineering, 2008, 134(2): 209-220.
[21]CHISARI C, MACORINI L, IZZUDDIN B A. An anisotropic plastic-damage model for 3D nonlinear simulation of masonry structures[J]. International Journal for Numerical Methods in Engineering, 2023, 124(6): 1253-1279.
[22]PORTIOLI F P A, LOURENÇO P B. Nonlinear static analysis of masonry structures with mortar joints and cracking units by optimization-based rigid block models[J]. Earthquake Engineering & Structural Dynamics, 2024, 53(13): 3963-3982.
[23]ZAMPIERI P, PIAZZON R, PANT B, et al. A simplified modelling approach for the in-plane analysis of masonry structures strengthened by FRCMs[J]. Key Engineering Materials, 2022, 916: 201-206.
[24]SHEN J X, REN X D, ZHANG Y Q, et al. Slip-enhanced plastic-damage constitutive model for masonry structures[J]. Engineering Structures, 2022, 254: 113792.
[25]NINO S D, LUONGO A. A simple homogenized orthotropic model for in-plane analysis of regular masonry walls[J]. International Journal of Solids and Structures, 2019, 167: 156-169.
[26]WEBER M, THOMA K, HOFMANN J. Finite element analysis of masonry under a plane stress state[J]. Engineering Structures, 2021, 226: 111214.
[27]TISSERAND P J, ROSTAGNI H, GIRY C, et al. An orthotropic damage model with internal sliding and friction for masonry-like material[J]. Engineering Fracture Mechanics, 2022, 267: 108397.
[28]PELÀ L, CERVERA M, OLLER S, et al. A localized mapped damage model for orthotropic materials[J]. Engineering Fracture Mechanics, 2014, 124: 196-216.
[29]FU Q S, QIAN J, BESKOS D E. Inelastic anisotropic constitutive models based on evolutionary linear transformations on stress tensors with application to masonry[J]. Acta Mechanica, 2018, 229(2): 719-743.
[30]WU B Y, DAI J W, BAI W, et al. Triaxial elastoplastic damage constitutive model of unreinforced clay brick masonry wall[J]. Earthquake Engineering and Engineering Vibration, 2023, 22(1): 157-172.
[31]KOURIS L A S, KAPPOS A J. Detailed and simplified non-linear models for timber-framed masonry structures[J]. Journal of Cultural Heritage, 2012, 13(1): 47-58.
[32]PELÀ L, CERVERA M, ROCA P. Continuum damage model for orthotropic materials: application to masonry[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(9/10/11/12): 917-930.
[33]PELÀ L, CERVERA M, ROCA P. An orthotropic damage model for the analysis of masonry structures[J]. Construction and Building Materials, 2013, 41: 957-967.
[34]BILKO P, MAYSZKO L. An orthotropic elastic-plastic constitutive model for masonry walls[J]. Materials, 2020, 13(18): 4064.
[35]岳健广,钱 江,伍 凯,等.用于砖砌体修正屈服面的塑性损伤模型[J].力学季刊,2012,33(1):146-152.
YUE Jianguang, QIAN Jiang, WU Kai,et al. A modified plastic damage model for masonry structure[J]. Chinese Quarterly of Mechanics, 2012, 33(1): 146-152.
[36]DROUGKAS A. Macro-modelling of orthotropic damage in masonry: combining micro-mechanics and continuum FE analysis[J]. Engineering Failure Analysis, 2022, 141: 106704.
[37]CHISARI C, MACORINI L, IZZUDDIN B A. Multiscale model calibration by inverse analysis for nonlinear simulation of masonry structures under earthquake loading[J]. International Journal for Multiscale Computational Engineering, 2020, 18(2): 241-263.
[38]牛力军,张文芳.砖砌体双参数单轴受压弹塑性损伤力学模型[J].力学与实践,2017,39(1):35-39.
NIU Lijun, ZHANG Wenfang. Uniaxial compression elastic-plastic damage model with double parameters of brick masonry[J]. Mechanics in Engineering, 2017, 39(1): 35-39.
[39]杨卫忠.砌体受压本构关系模型[J].建筑结构,2008,38(10):80-82.
YANG Weizhong. Constitutive relationship model for masonry materials in compression[J]. Building Structure, 2008, 38(10): 80-82.
[40]杨卫忠,樊 濬.砌体受压应力-应变关系[J].郑州大学学报(工学版),2007,28(1):47-50.
YANG Weizhong, FAN Jun. A generic stress-strain equation for masonry materials in compression[J]. Journal of Zhengzhou University(Engineering Science), 2007, 28(1): 47-50.
[41]KREJCÍ T, KOUDELKA T, BERNARDO V, et al.Macroscopic response of regular masonry from homogenization:comparison of isotropic and orthotropic damage models[J]. MATEC Web of Conferences, 2020, 310: 00052.
[42]KREJCÍ T, KOUDELKA T, BERNARDO V, et al. Effective elastic and fracture properties of regular and irregular masonry from nonlinear homogenization[J]. Computers & Structures, 2021, 254: 106580.
[43]BERNARDO V, KREJCÍ T, KOUDELKA T, et al. Homogenization of unreinforced old masonry wall comparison of scalar isotropic and orthotropic damage models[J]. Acta Polytechnica CTU Proceedings, 2020, 26: 1-6.
[44]ADDESSI D, SACCO E. A homogenized model for the nonlinear analysis of masonry columns in compression[J]. European Journal of Mechanics - A/Solids, 2018, 71: 335-350.
[45]MASSART T, BOUILLARD P, GEERS M G D, et al. Anisotropic damage effects in masonry walls[J]. Journal de Physique IV, 2003, 105(3): 149-156.
[46]郑山锁,赵 鹏.冻融循环条件下砌体受压损伤本构模型[J].工业建筑,2015,45(2):15-18.
ZHENG Shansuo, ZHAO Peng. Constitutive relationship model for masonry in compression under action of freeze-thaw cycle[J]. Industrial Construction, 2015, 45(2): 15-18.
[47]商效瑀,郑山锁,徐 强,等.冻融循环下轴心受压砖砌体损伤本构关系模型[J].建筑材料学报,2015,18(6):1045-1049,1054.
SHANG Xiaoyu, ZHENG Shansuo, XU Qiang, et al. Damage constitute model of brick masonry under freeze-thaw cycles and axial compression[J]. Journal of Building Materials, 2015, 18(6): 1045-1049, 1054.
[48]王浩宇,淳 庆,张承文,等.采用弹塑性损伤力学的砖石建筑遗产结构性能非线性有限元分析[J].华侨大学学报(自然科学版),2022,43(3):338-347.
WANG Haoyu, CHUN Qing, ZHANG Chengwen, et al. Nonlinear finite element analysis of structural performance of bricks and stones building heritage using elastoplastic damage mechanics[J]. Journal of Huaqiao University(Natural Science), 2022, 43(3): 338-347.
[49]QUINTEROS R D, OLLER S, NALLIM L G. Nonlinear homogenization techniques to solve masonry structures problems[J]. Composite Structures, 2012, 94(2): 724-730.
[50]CERVERA M, TESEI C, VENTURA G. Cracking of quasi-brittle structures under monotonic and cyclic loadings: a d+/d- damage model with stiffness recovery in shear[J]. International Journal of Solids and Structures, 2018, 135: 148-171.
[51]富秋实,钱 江.基于各向异性损伤本构模型的砌体结构抗震分析[J].计算力学学报,2018,35(6):663-668.
FU Qiushi, QIAN Jiang. Seismic analysis of masonry structures based on anisotropic damage constitutive model[J]. Chinese Journal of Computational Mechanics, 2018, 35(6): 663-668.
[52]TESCHEMACHER T, KALKBRENNER P, PELÀ L, et al. An orthotropic damage model for masonry walls with consistent damage evolution laws[J]. Materials and Structures, 2023, 56(8): 151.
[53]BERTO L, SAETTA A, SCOTTA R, et al. An orthotropic damage model for masonry structures[J]. International Journal for Numerical Methods in Engineering, 2002, 55(2): 127-157.
[54]PODESTAGRAVE S.A damage model for the analysis of the seismic response of monumental buildings[J]. Journal of Earthquake Engineering, 2005, 9(3): 419-444.
[55]TESEI C, VENTURA G. A unilateral nonlocal tensile damage model for masonry structures[J]. Procedia Structural Integrity, 2016, 2: 2690-2697.
[56]ZUCCHINI A, LOURENÇO P B. A coupled homogenisation-damage model for masonry cracking[J]. Computers & Structures, 2004, 82(11/12): 917-929.
[57]NIE Y, SHEIKH A, GRIFFITH M, et al. A damage-plasticity based interface model for simulating in-plane/out-of-plane response of masonry structural panels[J]. Computers & Structures, 2022, 260: 106721.
[58]VERSTRYNGE E, SCHUEREMANS L, VAN GEMERT D, et al. Modelling and analysis of time-dependent behaviour of historical masonry under high stress levels[J]. Engineering Structures, 2011, 33(1): 210-217.
[59]PAPA E, TALIERCIO A. A visco-damage model for brittle materials under monotonic and sustained stresses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(3): 287-310.
[60]VERSTRYNGE E, SCHUEREMANS L, VAN GEMERT D. Time-dependent mechanical behavior of lime-mortar masonry[J]. Materials and Structures, 2011, 44(1): 29-42.
[61]CECCHI A, TRALLI A. A homogenized viscoelastic model for masonry structures[J]. International Journal of Solids and Structures, 2012, 49(13): 1485-1496.
[62]CHAKER A, REKIK A, LANGLET A, et al. Semi-numerical micromechanical model for viscoelastic microcracked masonry[J]. Mechanics of Materials, 2022, 166: 104218.
[63]REKIK A, GASSER A. Numerical homogenization model for effective creep properties of microcracked masonry[J]. International Journal of Solids and Structures, 2016, 102: 297-320.
[64]XU G, GUTIERREZ M, ARORA K, et al. Visco-plastic response of deep tunnels based on a fractional damage creep constitutive model[J]. Acta Geotechnica, 2022, 17(2): 613-633.
[65]CREAZZA G, MATTEAZZI R, SAETTA A, et al. Analyses of masonry vaults: a macro approach based on three-dimensional damage model[J]. Journal of Structural Engineering, 2002, 128(5): 646-654.
[66]PODESTÀ S. A damage model for the analysis of the seismic response of monumental buildings[J]. Journal of Earthquake Engineering, 2005, 9(3): 419-444.
[67]MALENA M, PORTIOLI F, GAGLIARDO R, et al. Collapse mechanism analysis of historic masonry structures subjected to lateral loads: a comparison between continuous and discrete models[J]. Computers & Structures, 2019, 220: 14-31.
[68]VALENTE M, MILANI G. Damage assessment and partial failure mechanisms activation of historical masonry churches under seismic actions: three case studies in Mantua[J]. Engineering Failure Analysis, 2018, 92: 495-519.
[69]RESTA M, FIORE A, MONACO P. Non-linear finite element analysis of masonry towers by adopting the damage plasticity constitutive model[J]. Advances in Structural Engineering, 2013, 16(5): 791-803.
[70]PANT B, MACORINI L, IZZUDDIN B A. A two-level macroscale continuum description with embedded discontinuities for nonlinear analysis of brick/block masonry[J]. Computational Mechanics, 2022, 69(3): 865-890.
[71]CARPINTERI A, LACIDOGNA G, MANUELLO A. The b-value analysis for the stability investigation of the ancient Athena Temple in Syracuse[J]. Strain, 2011, 47(S1): 243-253.
[72]VERSTRYNGE E, GEMERT D V. Creep failure of two historical masonry towers: analysis from material to structure[J]. International Journal of Masonry Research and Innovation, 2018, 3(1): 50.
[73]D'AYALA D, FODDE E. Structural analysis of historic construction: preserving safety and significance[M].Boca Raton: CRC Press, 2008.
[74]SÁNCHEZ-BEITIA S, LUENGAS-CARREÑO D, CRESPO DE ANTONIO M. The presence of secondary creep in historic masonry constructions: a hidden problem[J]. Engineering Failure Analysis, 2017, 82: 315-326.
[75]ANZANI A, BINDA L, ROBERTI G M. Experimental researches into long-term behaviour of historical masonry[J]. WIT Transactions on State-of-the-art in Science and Engineering, 2007, 11: 29-55.
[76]ANZANI A, GARAVAGLIA E, BINDA L. Long-term damage of historic masonry: a probabilistic model[J]. Construction and Building Materials, 2009, 23(2): 713-724.
[77]GARAVAGLIA E, ANZANI A, BINDA L. Probabilistic model for the assessment of historic buildings under permanent loading[J]. Journal of Materials in Civil Engineering, 2006, 18(6): 858-867.
[78]ANZANI A, BINDA L, ROBERTI G M. The effect of heavy persistent actions into the behaviour of ancient masonry[J]. Materials and Structures, 2000, 33(4): 251-261.

相似文献/References:

[1]屈文俊,郭 朋,崔 巍.预制板上粘贴钢板条桁架对砌体教学楼抗震性能的影响[J].建筑科学与工程学报,2013,30(04):14.
 QU Wen-jun,GUO Peng,CUI Wei.Influences of Sticking Steel Strips Under Precast RC Slabs on Seismic Performance of Masonry Teaching Building[J].Journal of Architecture and Civil Engineering,2013,30(05):14.
[2]屈文俊,马瑞嘉,崔 巍.预制板现浇混凝土叠合层加固砌体教学楼的抗震性能分析[J].建筑科学与工程学报,2013,30(03):7.
 QU Wen-jun,MA Rui-jia,CUI Wei.Analysis of Seismic Behavior of Masonry Teaching Buildings Strengthened by Cast-in-place RC Layer on Precast RC Slabs[J].Journal of Architecture and Civil Engineering,2013,30(05):7.
[3]谭晓晶,吴斌,辛文杰,等.林甸县农村砌体房屋抗震性能调查与分析[J].建筑科学与工程学报,2012,29(02):36.
 TAN Xiao-jing,WU Bin,XIN Wen-jie,et al.Investigation and Analysis of Seismic Behavior of Masonry Buildings in Rural Areas Located in Lindian County[J].Journal of Architecture and Civil Engineering,2012,29(05):36.
[4]吴建营,李杰.混凝土弹塑性损伤本构关系统一模型[J].建筑科学与工程学报,2005,22(04):15.
 WU Jian-ying,LI Jie.Unified elasto-plastic damage constitutive relations model for concrete[J].Journal of Architecture and Civil Engineering,2005,22(05):15.
[5]李忠友,姚志华,胡 柏.基于能量耗散特征的脆性岩土材料三轴压缩损伤模型[J].建筑科学与工程学报,2019,36(04):80.
 LI Zhong-you,YAO Zhi-hua,HU Bai.Triaxial Compression Damage Model of Brittle Geotechnical Materials Based on Energy Dissipation Characteristics[J].Journal of Architecture and Civil Engineering,2019,36(05):80.
[6]郭 猛,李薇薇,贾英杰.复杂立面形状砌体墙抗震性能试验[J].建筑科学与工程学报,2021,38(05):38.[doi:10.19815/j.jace.2021.04007]
 GUO Meng,LI Wei-wei,JIA Ying-jie.Experiment on Seismic Performance of Masonry Walls with Complex Facade Shapes[J].Journal of Architecture and Civil Engineering,2021,38(05):38.[doi:10.19815/j.jace.2021.04007]
[7]郭 猛,范旺生,孙 静.转动变形机制下砌体墙的等效抗侧刚度计算模型[J].建筑科学与工程学报,2022,39(06):102.[doi:10.19815/j.jace.2021.07041]
 GUO Meng,FAN Wang-sheng,SUN Jing.Calculation Model of Equivalent Lateral Stiffness of Masonry Wall Under Rotational Deformation Mechanism[J].Journal of Architecture and Civil Engineering,2022,39(05):102.[doi:10.19815/j.jace.2021.07041]
[8]李 超,郭 猛.小开洞砌体墙抗震性能研究[J].建筑科学与工程学报,2023,40(03):92.[doi:10.19815/j.jace.2022.03008]
 LI Chao,GUO Meng.Investigation on seismic behavior of masonry walls with small openings[J].Journal of Architecture and Civil Engineering,2023,40(05):92.[doi:10.19815/j.jace.2022.03008]
[9]付 鹏,亓宪寅,王胜伟,等.高温作用后层状复合岩石单轴压缩试验损伤机理研究[J].建筑科学与工程学报,2024,41(04):139.[doi:10.19815/j.jace.2022.08002]
 FU Peng,QI Xianyin,WANG Shengwei,et al.Study on damage law of layered composite rock under uniaxial compression test after high temperature[J].Journal of Architecture and Civil Engineering,2024,41(05):139.[doi:10.19815/j.jace.2022.08002]
[10]屈俊童,浦钧翔,王文彬,等.水泥-磷石膏固化泥炭质土的力学性能及本构模拟[J].建筑科学与工程学报,2025,42(05):181.[doi:10.19815/j.jace.2024.05011]
 QU Juntong,PU Junxiang,WANG Wenbin,et al.Mechanical properties and constitutive simulation of cement-phosphogypsum stabilized peaty soil[J].Journal of Architecture and Civil Engineering,2025,42(05):181.[doi:10.19815/j.jace.2024.05011]

备注/Memo

备注/Memo:
收稿日期:2024-02-18 投稿网址:http://jace.chd.edu.cn
基金项目:广东省住房和城乡建设厅项目(2022-K10-404189)
作者简介:徐 丽(1971-),女,工学博士,副研究员,E-mail:xl217@hotmail.com。
通信作者:杨正熙(1996-),男,工学博士研究生,E-mail:1112216006@e.gzhu.edu.cn。
Author resumes: XU Li(1971-), female, PhD, associate research fellow, E-mail: xl217@hotmail.com; YANG Zhengxi(1996-), male, doctoral student, E-mail: 1112216006@e.gzhu.edu.cn.
更新日期/Last Update: 2025-09-25