|本期目录/Table of Contents|

[1]吴函恒,王辰,王涛,等.基于机器学习算法的冷弯薄壁型钢自攻螺钉连接受剪承载力研究[J].建筑科学与工程学报,2025,42(05):45-54.[doi:10.19815/j.jace.2024.04089]
 WU Hanheng,WANG Chen,WANG Tao,et al.Study on shear capacity of cold-formed thin-walled steel self-drilling screw connections based on machine learning algorithms[J].Journal of Architecture and Civil Engineering,2025,42(05):45-54.[doi:10.19815/j.jace.2024.04089]
点击复制

基于机器学习算法的冷弯薄壁型钢自攻螺钉连接受剪承载力研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年05期
页码:
45-54
栏目:
建筑结构
出版日期:
2025-09-30

文章信息/Info

Title:
Study on shear capacity of cold-formed thin-walled steel self-drilling screw connections based on machine learning algorithms
文章编号:
1673-2049(2025)05-0045-10
作者:
吴函恒,王辰,王涛,隋璐,周天华
(长安大学 建筑工程学院,陕西 西安 710061)
Author(s):
WU Hanheng, WANG Chen, WANG Tao, SUI Lu, ZHOU Tianhua
(School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China)
关键词:
冷弯薄壁型钢 机器学习 自攻螺钉连接 受剪承载力
Keywords:
cold-formed thin-walled steel machine learning self-drilling screw connection shear capacity
分类号:
TU392.5
DOI:
10.19815/j.jace.2024.04089
文献标志码:
A
摘要:
为了提高冷弯薄壁型钢自攻螺钉连接受剪承载力预测的准确性,提出了一种基于机器学习算法的受剪承载力预测模型。在试验的基础上,以钉头及钉尾处钢板厚度、螺钉直径和钢板屈服强度作为影响因素,基于BP神经网络和支持向量回归(SVR)算法对试验数据进行训练,得到受剪承载力预测模型,并将模型预测结果与试验值及规范计算值进行对比。结果表明:两种基于机器学习算法的模型均能较为准确地预测自攻螺钉连接的受剪承载力,具有较高的预测精度,并且模型泛化能力强,而规范公式计算值偏为保守; 与基于BP神经网络算法的承载力预测模型相比,基于SVR算法的模型预测精度优于BP神经网络,其拟合优度提升了3.5%,均方根误差减小了27%,平均绝对误差减小了13%; 研究成果可为实际工程应用提供参考。
Abstract:
In order to improve the accuracy of shear capacity prediction of cold-formed thin-walled steel self-drilling screw connection, a shear capacity prediction model based on machine learning algorithm was proposed. Based on tests, taking thickness of steel plates contacting with screw heads and screw tails as well as diameter of screws as factors, the BP neural network and support vector regression(SVR)algorithms were used to train the test data. Then the prediction models of shear bearing capacity were obtained. The prediction results were compared with test values and code values. The results show that the two machine learning algorithms can predict the shear capacity more accurately and have high prediction accuracy. The models have a strong generalization ability, but the calculated values based on related codes are conservative. Compared with the prediction model of bearing capacity based on BP neural network algorithm, the fit goodness based on SVR algorithm is improved by 3.5%, the root mean square error is reduced by 27%, and the mean absolute error is reduced by 13%, which indicate that the prediction accuracy of the SVR model is better than that of BP neural network. The research findings can provide references for application of actual engineering.

参考文献/References:

[1] FENG R Q, CAI Q, MA Y, et al. Shear analysis of self-drilling screw connections of CFS walls with steel sheathing[J]. Journal of Constructional Steel Research, 2020, 167: 105842.
[2]JAMMI A, JAYACHANDRAN S A. Experimental studies on screw connections between cold-formed steel framing and sandwich sheathing[J]. Structures, 2021, 32: 2048-2059.
[3]NG A L Y, LAU H H, FANG Z Y, et al. Experimental studies of timber to cold-formed steel connections with self-drilling screws[J]. Structures, 2023, 49: 492-507.
[4]KOU Y F, TIAN L M, HAO J P, et al. Lateral resistance of the screwed connections of original bamboo[J]. Journal of Building Engineering, 2022, 45: 103601.
[5]陈 伟,陈励纬,陈盛根,等.冷成型钢龙骨-石膏板自攻螺钉连接低周往复荷载试验[J].建筑科学与工程学报,2018,35(6):88-93.
CHEN Wei, CHEN Liwei, CHEN Shenggen, et al. Low cyclic load experiment of cold-formed steel self tapping screw connection of keel-plasterboard[J]. Journal of Architecture and Civil Engineering, 2018, 35(6): 88-93.
[6]FIORINO L, PALI T, BUCCIERO B, et al. Experimental study on screwed connections for sheathed CFS structures with gypsum or cement based panels[J]. Thin-walled Structures, 2017, 116: 234-249.
[7]YE J H, WANG X X, ZHAO M Y. Experimental study on shear behavior of screw connections in CFS sheathing[J]. Journal of Constructional Steel Research, 2016, 121: 1-12.
[8]李元齐,马荣奎,何慧文.冷弯薄壁型钢与结构用OSB板自攻螺钉连接性能试验研究[J].建筑结构学报,2014,35(5):48-56.
LI Yuanqi, MA Rongkui, HE Huiwen. Experimental study on behavior of screw connections for cold-formed thin-walled steel and structural OSB boards[J]. Journal of Building Structures, 2014, 35(5): 48-56.
[9]李元齐,马荣奎,何慧文.冷弯薄壁型钢与覆面钢板自攻螺钉连接性能试验研究[J].建筑钢结构进展,2017,19(6):60-64.
LI Yuanqi, MA Rongkui, HE Huiwen. Experimental study on behavior of screw connections for cold-formed thin-walled steel studs and steel sheathings[J]. Progress in Steel Building Structures, 2017, 19(6): 60-64.
[10]郝际平,刘 斌,邵大余,等.冷弯薄壁型钢结构体系中自攻螺钉连接的抗剪性能试验研究[J].西安建筑科技大学学报(自然科学版),2014,46(6):769-773,779.
HAO Jiping, LIU Bin, SHAO Dayu, et al. Experimental study on shear behavior of screw connections in cold-formed thin-wall steel structures[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2014, 46(6): 769-773, 779.
[11]陈 伟,叶继红,姜 健,等.冷成型钢龙骨-覆面板材自攻螺钉连接力学性能试验研究[J].建筑结构学报,2021,42(增1):418-425.
CHEN Wei, YE Jihong, JIANG Jian, et al. Experimental study on mechanical behavior of cold-formed steel stud-to-sheathing screw connections[J]. Journal of Building Structures, 2021, 42(S1): 418-425.
[12]WU H H, CHAO S S, LI Y C, et al. Experimental investigation of strengthened screw connection and application in CFS shear walls[J]. Journal of Constructional Steel Research, 2020, 168: 105870.
[13]JIANG L Q, ZHANG X S, HU Y, et al. Experimental study of novel wrapped CFRP-strengthened CFS-to-sheathing screw connections[J]. Thin-walled Structures, 2023, 192: 111161.
[14]石 宇,王身伟,刘永健.冷弯薄壁型钢单颗自攻螺钉抗剪连接性能研究[J].建筑科学与工程学报,2014,31(2):57-64.
SHI Yu, WANG Shenwei, LIU Yongjian. Research on shear behavior of single tapping screw connection in cold-formed thin-wall steel structures[J]. Journal of Architecture and Civil Engineering, 2014, 31(2): 57-64.
[15]卢林枫,张亚平,方文琦,等.冷弯薄壁型钢自攻螺钉连接抗剪性能试验研究[J].中南大学学报(自然科学版),2013,44(7):2997-3005.
LU Linfeng, ZHANG Yaping, FANG Wenqi, et al. Experimental investigation on shear-bearing capacity for self-drilling screw connections of cold-formed thin-walled steel[J].Journal of Central South University(Science and Technology), 2013, 44(7): 2997-3005.
[16]冷弯薄壁型钢结构技术规范:GB 50018—2002[S].北京:中国标准出版社,2003.
Technical code of cold-formed thin-wall steel structures: GB 50018—2002[S]. Beijing: Standards Press of China, 2003.
[17]North American specification for the design of cold-formed steel structural members: AISI S100-2007[S]. Washington DC: American Iron and Steel Institute, 2007.
[18]施文凯,周 宇,王尉阔,等.基向量引导的支持向量机RC框架抗震韧性评估[J].建筑结构学报,2024,45(5):81-91.
SHI Wenkai, ZHOU Yu, WANG Weikuo, et al. Basis vectors-guided support vector machines for seismic resilience assessment of RC frames[J]. Journal of Building Structures, 2024, 45(5): 81-91.
[19]姜克杰,胡 松,韩 强.基于长短期记忆网络的FRP约束混凝土圆柱循环轴压应力-应变预测模型[J].工程力学,2024,41(2):98-111.
JIANG Kejie, HU Song, HAN Qiang. Cyclic axial compressive stress-strain prediction model for FRP-constrained concrete cylinder based on long short-term memory networks[J]. Engineering Mechanics, 2024, 41(2): 98-111.
[20]刘廷滨,黄 滔,欧嘉祥,等.基于ANN和XGB算法的锈蚀钢筋混凝土高温粘结强度预测方法[J].工程力学,2024,41(增1):300-309.
LIU Tingbin, HUANG Tao, OU Jiaxiang, et al. Prediction method of high temperature bond strength of corroded reinforced concrete based on ANN and XGB algorithm[J]. Engineering Mechanics, 2024,41(S1): 300-309.
[21]侯 超,周晓光.基于机器学习的矩形钢管混凝土柱偏压承载力预测[J].建筑结构学报,2022,43(增1):155-166.
HOU Chao, ZHOU Xiaoguang. Prediction of eccentric bearing capacity of rectangular concrete-filled steel tubular columns based on machine learning[J]. Journal of Building Structures, 2022, 43(S1): 155-166.
[22]戴理朝,梁紫璋,胡 卓,等.基于改进PF算法的锈蚀RC结构抗弯承载力预测方法[J].工程力学,2023,40(9):108-116,189.
DAI Lizhao, LIANG Zizhang, HU Zhuo, et al. Flexural capacity prediction of corroded RC structures based on improved particle filter algorithm[J]. Engineering Mechanics, 2023, 40(9): 108-116, 189.
[23]张书颖,陈适之,韩万水,等.基于集成学习的FRP加固混凝土梁抗弯承载力预测研究[J].工程力学,2022,39(8):245-256.
ZHANG Shuying, CHEN Shizhi, HAN Wanshui, et al. Study on prediction of FRP strengthened reinforced concrete beam's moment bearing capacity based on ensemble learning algorithm[J]. Engineering Mechanics, 2022, 39(8): 245-256.
[24]刘 坚,招 渝,刘长江,等.预制装配式型钢混凝土梁抗剪承载力的智能模型研究[J].建筑钢结构进展,2024,26(3):12-20.
LIU Jian, ZHAO Yu, LIU Changjiang, et al. The shear capacity intelligent model for prefabricated steel reinforced concrete beams[J]. Progress in Steel Building Structures, 2024, 26(3): 12-20.
[25]刘 坚,彭林苗,马宏伟,等.高强钢管高强混凝土短柱力学性能智能模型研究[J].建筑钢结构进展,2023, 25(11):12-20.
LIU Jian, PENG Linmiao, MA Hongwei, et al. Study on a neural network intelligent model of bearing capacity of high-strength concrete filled high-strength square steel tubular stub columns[J]. Progress in Steel Building Structures, 2023, 25(11): 12-20.
[26]Test standard for determining the tensile and shear strengths of steel screws: AISI S904-17[S]. Washington DC: American Iron and Steel Institute, 2017.
[27]金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2010[S].北京:中国标准出版社,2011.
Metallic materials — tensile testing: part 1: method of test at room temperature: GB/T 228.1—2010[S]. Beijing: Standards Press of China, 2011.
[28]Standard test methods for determining bending yield moment of nails: ASTM F1575-17[S]. West Conshohocken: American Society for Testing and Materials, 2013.

相似文献/References:

[1]高婷婷,周绪红,刘永健,等.采用GB 50018—2002计算壁厚小于2 mm的受弯构件承载力的适用性分析[J].建筑科学与工程学报,2013,30(04):91.
 GAO Ting-ting,ZHOU Xu-hong,LIU Yong-jian,et al.Applicability Analysis of Bear Capacity of Flexural Members with Thickness Less than 2 mm Calculated Using GB 50018—2002[J].Journal of Architecture and Civil Engineering,2013,30(05):91.
[2]石 宇,王身伟,刘永健.冷弯薄壁型钢单颗自攻螺钉抗剪连接性能研究[J].建筑科学与工程学报,2014,31(02):57.
[3]石宇,周绪红,刘永健.冷弯薄壁卷边槽钢偏心受压构件承载力计算的折减强度法[J].建筑科学与工程学报,2011,28(03):40.
 SHI Yu,ZHOU Xu-hong,LIU Yong-jian.Strength-reduction Method for Load-carrying Capacity of Cold-formed Thin-walled Lipped Channel Members Under Eccentric Compression[J].Journal of Architecture and Civil Engineering,2011,28(05):40.
[4]刘向斌,周天华,聂少锋,等.冷弯薄壁型钢开口三肢拼合立柱轴压性能有限元分析[J].建筑科学与工程学报,2011,28(03):119.
 LIU Xiang-bin,ZHOU Tian-hua,NIE Shao-feng,et al.Finite Element Analysis of Cold-formed Thin-walled Steel Three Open Limbs Built-up Columns Under Axial Compression[J].Journal of Architecture and Civil Engineering,2011,28(05):119.
[5]聂少锋,周天华,熊智刚,等.冷弯薄壁型钢开洞组合墙体抗剪性能研究[J].建筑科学与工程学报,2012,29(01):101.
 NIE Shao-feng,ZHOU Tian-hua,XIONG Zhi-gang,et al.Research on Shear Resistance Behavior of Cold-formed Thin-walled Steel Composite Walls with Opening[J].Journal of Architecture and Civil Engineering,2012,29(05):101.
[6]刘向斌,周天华,何鑫,等.冷弯薄壁型钢住宅结构整体扭转效应分析[J].建筑科学与工程学报,2012,29(02):83.
 LIU Xiang-bin,ZHOU Tian-hua,HE Xin,et al.Analysis of Torsional Effect of Cold-formed Thin-walled Steel Residence Structure[J].Journal of Architecture and Civil Engineering,2012,29(05):83.
[7]周绪红,李喆,刘永健,等.冷弯薄壁型钢拼合截面柱轴压承载力计算[J].建筑科学与工程学报,2012,29(04):1.
 ZHOU Xu-hong,LI Zhe,LIU Yong-jian,et al.Calculation Method for Bearing Capacity of Cold-formed Steel Built-up Columns Under Axial Compression[J].Journal of Architecture and Civil Engineering,2012,29(05):1.
[8]刘晶波,陈鸣,刘祥庆,等.低层冷弯薄壁型钢结构住宅整体性能分析[J].建筑科学与工程学报,2008,25(04):6.
 LIU Jing-bo,CHEN Ming,LIU Xiang-qing,et al.Integral Behavior Analysis of Cold-formed Thin-walled Steel Framing System of Low-rise Residential Buildings[J].Journal of Architecture and Civil Engineering,2008,25(05):6.
[9]周绪红,李艳敏,石宇,等.竖向荷载作用下冷弯薄壁型钢墙架柱的承载力[J].建筑科学与工程学报,2006,23(03):7.
 ZHOU Xu-hong,LI Yan-min,SHI Yu,et al.Bearing Capacity of Cold-Formed Thin-WalledSteel Wall Stud Under Vertical Load[J].Journal of Architecture and Civil Engineering,2006,23(05):7.
[10]管 宇,周绪红,石 宇,等.多层冷弯薄壁型钢住宅体系动力时程分析[J].建筑科学与工程学报,2018,35(05):142.
 GUAN Yu,ZHOU Xu-hong,SHI Yu,et al.Dynamic Time History Analysis for Mid-rise Cold-formed Thin-walled Steel Residential Building System[J].Journal of Architecture and Civil Engineering,2018,35(05):142.

备注/Memo

备注/Memo:
收稿日期:2024-04-26 投稿网址:http://jace.chd.edu.cn
基金项目:国家自然科学基金项目(51508029,51878055); 陕西省自然科学基础研究计划项目(2023-JC-YB-295);
中央高校基本科研业务费专项资金项目(300102282204,300102282718)
作者简介:吴函恒(1984-),男,工学博士,副教授,E-mail:wuhanheng@163.com。
Author resume: WU Hanheng(1984-), male, PhD, associate professor, E-mail: wuhanheng@163.com.
更新日期/Last Update: 2025-09-25