|本期目录/Table of Contents|

[1]付传清,王沈昕旸,舒江鹏,等.基于无人机巡检图像与BIM模型的桥梁病害自动化定位研究[J].建筑科学与工程学报,2025,42(05):135-144.[doi:10.19815/j.jace.2024.08087]
 FU Chuanqing,WANG Shenxinyang,SHU Jiangpeng,et al.Research of bridge defect automated localization based on UAV inspection images and BIM model[J].Journal of Architecture and Civil Engineering,2025,42(05):135-144.[doi:10.19815/j.jace.2024.08087]
点击复制

基于无人机巡检图像与BIM模型的桥梁病害自动化定位研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年05期
页码:
135-144
栏目:
隧道工程
出版日期:
2025-09-30

文章信息/Info

Title:
Research of bridge defect automated localization based on UAV inspection images and BIM model
文章编号:
1673-2049(2025)05-0135-10
作者:
付传清1,王沈昕旸1,舒江鹏2,3,徐庆凯4,章金勇4,蒋友4,谢义华4,徐声亮5
(1. 浙江工业大学 土木工程学院,浙江 杭州 310023; 2. 浙江大学 建筑工程学院,浙江 杭州 310058; 3. 浙江大学 长三角智慧绿洲创新中心,浙江 嘉兴 314100; 4. 中铁十二局集团城市发展建设有限公司,江苏 苏州 215011; 5. 宁波市政工程建设集团股份有限公司,浙江 宁波 315000)
Author(s):
FU Chuanqing1, WANG Shenxinyang1, SHU Jiangpeng2,3, XU Qingkai4, ZHANG Jinyong4, JIANG You4, XIE Yihua4, XU Shengliang5
1.College of Civil Engineering,Zhejiang University of Technology,Hangzhou 310023,Zhejiang,China;2.College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,Zhejiang,China;3.Innovation Center of Yangtze River Delta,Zhejiang University,Jiaxing 314100,Zhejiang,China;4.China Railway 12th Bureau Group Urban Development and Construction Co.,Ltd, Suzhou 215011,Jiangsu,China;5.Ningbo Municipal Engineering Construction Group Ltd,Ningbo 315000,Zhejiang,China
关键词:
桥梁工程 桥梁病害定位 坐标投影与映射 配准 无人机 BIM
Keywords:
bridge engineering bridge defect localization coordinate projection and mapping registration unmanned aerial vehicle BIM
分类号:
U446
DOI:
10.19815/j.jace.2024.08087
文献标志码:
A
摘要:
为实现局部病害图像在桥梁三维运维模型中的实时自动精准定位,提出基于无人机巡检图像、GPS坐标和BIM模型的桥梁病害自动化定位方法。首先提出通过坐标投影与映射方法将病害图像坐标由GPS WGS-84坐标系映射至BIM模型坐标系; 然后建立基于BIM模型的坐标配准算法,将2D病害图像配准于所处的BIM模型实体单元,实现病害图像与BIM模型的联动; 最后基于Autodesk Revit环境开展二次开发,实现算法落地。采用无人机进行了桥梁病害采集与现场试验,验证该方法的精度和可行性。结果表明:基于无人机拍摄的图像及所包含GPS信息,采用本方法可实现桥梁病害在BIM模型上的实时自动化精准定位,整体定位绝对误差平均值为19.50 cm,构件定位准确率为98.8%,基本满足桥梁巡检要求; 该研究成果具有较高的可行性和工程应用潜力,可以为桥梁长期运维管养提供精准数据与决策支持。
Abstract:
In order to realize the automatic real-time and accurate localization of local defect images in the 3D operation and maintenance model of bridges, a bridge defect automated localization method based on unmanned air vehicle(UAV)inspection images, global positioning system(GPS)coordinates and BIM models was proposed. Firstly, a coordinate projection and mapping method was proposed to map the defect image coordinates from GPS WGS-84 coordinate system to BIM model coordinate system. Then, a coordinate registration algorithm based on the BIM model was established to register and align the 2D defect image to the component unit of BIM model, and realized the linkage between the defect image and the BIM model. Finally, the algorithm was implemented by secondary development based on Autodesk Revit environment. The UAV was used to conduct the bridge defect acquisition and field test, and the accuracy and feasibility of the method were verified. The results show that based on the images taken by UAV and the contained GPS information, the proposed method can realize real-time automated accurate localization of bridge defects on BIM model. The overall localization mean absolute error is 19.50 cm, and the component localization accuracy rate is 98.8%, which basically meets the requirements of the bridge inspection. This research has enough feasibility and engineering application potential, and can provide accurate data basis and decision support for the long-term inspection and maintenance of bridges.

参考文献/References:

[1] DENG J H, SINGH A, ZHOU Y Y, et al. Review on computer vision-based crack detection and quantification methodologies for civil structures[J]. Construction and Building Materials, 2022, 356: 129238.
[2]ZHANG C, ZOU Y, WANG F, et al. Towards fully automated unmanned aerial vehicle-enabled bridge inspection: where are we at?[J]. Construction and Building Materials, 2022, 347: 128543.
[3]贺拴海,王安华,朱 钊,等.公路桥梁智能检测技术研究进展[J].中国公路学报,2021,34(12):12-24.
HE Shuanhai, WANG Anhua, ZHU Zhao, et al. Research progress on intelligent detection technologies of highway bridges[J]. China Journal of Highway and Transport, 2021, 34(12): 12-24.
[4]刘 春,艾克然木·艾克拜尔,蔡天池.面向建筑健康监测的无人机自主巡检与裂缝识别[J].同济大学学报(自然科学版),2022,50(7):921-932,918.
LIU Chun, AKBAR Akram, CAI Tianchi. UAV autonomous inspection and crack detection towards building health monitoring[J]. Journal of Tongji University(Natural Science), 2022, 50(7): 921-932, 918.
[5]QIU Q W, LAU D. Real-time detection of cracks in tiled sidewalks using YOLO-based method applied to unmanned aerial vehicle(UAV)images[J]. Automation in Construction, 2023, 147: 104745.
[6]HE X Y, TANG Z W, DENG Y B, et al. UAV-based road crack object-detection algorithm[J]. Automation in Construction, 2023, 154: 105014.
[7]DING W, YANG H, YU K, et al. Crack detection and quantification for concrete structures using UAV and transformer[J]. Automation in Construction, 2023, 152: 104929.
[8]PENG X, ZHONG X G, ZHAO C, et al. A UAV-based machine vision method for bridge crack recognition and width quantification through hybrid feature learning[J]. Construction and Building Materials, 2021, 299: 123896.
[9]丁 威,俞 珂,舒江鹏.基于深度学习和无人机的混凝土结构裂缝检测方法[J].土木工程学报,2021,54(增1):1-12.
DING Wei, YU Ke, SHU Jiangpeng. Method for detecting cracks in concrete structures based on deep learning and UAV[J]. China Civil Engineering Journal, 2021, 54(S1): 1-12.
[10]LI K, YAN X X, HAN Y. Multi-mechanism swarm optimization for multi-UAV task assignment and path planning in transmission line inspection under multi-wind field[J]. Applied Soft Computing, 2024, 150: 111033.
[11]丁 威,夏 哲,舒江鹏,等.基于负压吸附爬壁机器人和Transformer的混凝土桥塔裂缝识别检测[J].中国公路学报,2024,37(2):53-64.
DING Wei, XIA Zhe, SHU Jiangpeng, et al. Recognition and detection of concrete bridge tower cracks based on negative pressure adhesion wall-climbing robot and transformer[J]. China Journal of Highway and Transport, 2024, 37(2): 53-64.
[12]SHU J P, DING W, ZHANG J W, et al. Continual-learning-based framework for structural damage recognition[J]. Structural Control and Health Monitoring, 2022, 29(11): e3093.
[13]LIU Y F, NIE X, FAN J S, et al. Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction[J]. Computer-aided Civil and Infrastructure Engineering, 2020, 35(5): 511-529.
[14]FENG C Q, LI B L, LIU Y F, et al. Crack assessment using multi-sensor fusion simultaneous localization and mapping(SLAM)and image super-resolution for bridge inspection[J]. Automation in Construction, 2023, 155: 105047.
[15]GAO X H, PISHDAD-BOZORGI P. BIM-enabled facilities operation and maintenance: a review[J]. Advanced Engineering Informatics, 2019, 39: 227-247.
[16]王 娟,游弘宇,杨庆山,等.BIM在基础设施智能监测中的研究与应用进展[J].华中科技大学学报(自然科学版),2022,50(8):105-116.
WANG Juan, YOU Hongyu, YANG Qingshan, et al. Research and application progress of BIM technology in smart monitoring of infrastructure[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(8): 105-116.
[17]TARABEN J, MORGENTHAL G. Methods for the automated assignment and comparison of building damage geometries[J]. Advanced Engineering Informatics, 2021, 47: 101186.
[18]杨 旭,李 毅,刘文博,等.基于BIM+GIS的沥青路面表里全域病害数字孪生研究[J].中国公路学报,2023,36(3):120-135.
YANG Xu, LI Yi, LIU Wenbo, et al. Digital twin of asphalt pavement surface and internal full-field distress based on BIM+GIS technology[J]. China Journal of Highway and Transport, 2023, 36(3): 120-135.
[19]郑其运,杨莉琼,王思琦,等.基于BIM技术的古建筑病害信息动态管理[J].工程管理学报,2023,37(4):84-89.
ZHENG Qiyun, YANG Liqiong, WANG Siqi, et al. Dynamic management of ancient buildings disease information based on BIM technology[J]. Journal of Engineering Management, 2023, 37(4): 84-89.
[20]CHOY C, PARK J, KOLTUN V. Fully convolutional geometric features[C]//IEEE. International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019: 8957-8965.
[21]CHEN S S, FAN G, LI J. Improving completeness and accuracy of 3D point clouds by using deep learning for applications of digital twins to civil structures[J]. Advanced Engineering Informatics, 2023, 58: 102196.
[22]ACHARYA D, KHOSHELHAM K, WINTER S. BIM-PoseNet: indoor camera localisation using a 3D indoor model and deep learning from synthetic images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 245-258.
[23]HA I, KIM H, PARK S, et al. Image retrieval using BIM and features from pretrained VGG network for indoor localization[J]. Building and Environment, 2018, 140: 23-31.
[24]SCHAUB L, PODKOSOVA I, SCHÖNAUER C, et al. Point cloud to BIM registration for robot localization and augmented reality[C]//IEEE. International Symposium on Mixed and Augmented Reality Adjunct(ISMAR-Adjunct). Singapore: IEEE, 2022: 77-84.
[25]YIN H, LIN Z Y, YEOH J K W. Semantic localization on BIM-generated maps using a 3D LiDAR sensor[J]. Automation in Construction, 2023, 146: 104641.
[26]ZHANG C G, SHU J P, SHAO Y, et al. Automated generation of FE models of cracked RC beams based on 3D point clouds and 2D images[J]. Journal of Civil Structural Health Monitoring, 2022, 12(1): 29-46.
[27]ZHANG C, WANG F, ZOU Y, et al. Automated UAV image-to-BIM registration for building façade inspection using improved generalised Hough transform[J]. Automation in Construction, 2023, 153: 104957.
[28]MONASSE P, DJAHEL R, VALLET B. Registration for urban modeling based on linear and planar features[C]//IEEE. Proceedings of the 11th European Workshop on Visual Information Processing(EUVIP). Gjovik: IEEE, 2023: 1-8.
[29]KAISER T, CLEMEN C, MAAS H G. Automatic co-registration of photogrammetric point clouds with digital building models[J]. Automation in Construction, 2022, 134: 104098.
[30]CHEN J, LIU D, LI S, et al. Registering georeferenced photos to a building information model to extract structures of interest[J]. Advanced Engineering Informatics, 2019, 42: 100937.
[31]LIU D, XIA X, CHEN J, et al. Integrating building information model and augmented reality for drone-based building inspection[J]. Journal of Computing in Civil Engineering, 2021, 35(2): 04020073.
[32]BANKO A, BANKOVIC T, PAVASOVIC M, et al. An all-in-one application for temporal coordinate transformation in geodesy and geoinformatics[J]. ISPRS International Journal of Geo-Information, 2020, 9(5): 323.
[33]JAUD S, DONAUBAUER A, HEUNECKE O, et al. Georeferencing in the context of building information modelling[J]. Automation in Construction, 2020, 118: 103211.

相似文献/References:

[1]刘荣桂,刘德鑫,延永东,等.CFRP筋复合型锚具锚固性能研究[J].建筑科学与工程学报,2013,30(02):9.
 LIU Rong-gui,LIU De-xin,YAN Yong-dong.[J].Journal of Architecture and Civil Engineering,2013,30(05):9.
[2].《建筑科学与工程学报》征稿简则[J].建筑科学与工程学报,2013,30(02):127.
[3]李加武,黄森华,王新.开口断面斜拉桥主梁动力特性的有限元简化计算[J].建筑科学与工程学报,2013,30(04):59.
 LI Jia-wu,HUANG Sen-hua,WANG Xin.Finite Element Simplified Computation for Dynamic Characteristics of Cable-stayed Bridge Girder with Opening Section[J].Journal of Architecture and Civil Engineering,2013,30(05):59.
[4]任 伟,盖轶婷,王 锦.混凝土自锚式悬索桥过程控制状态分析[J].建筑科学与工程学报,2014,31(03):45.
 REN Wei,GAI Yi-ting,WANG Jin.Analysis of Process Control State About Concrete Selfanchored Suspension Bridge[J].Journal of Architecture and Civil Engineering,2014,31(05):45.
[5]李加武,周 琴,黄森华.简支梁桥铅芯橡胶支座减震特性研究[J].建筑科学与工程学报,2014,31(03):124.
 LIU Xin-hua,LI Jia-wu,ZHOU Qin,et al.Research on Seismic Isolation Characteristics of LRB for Simply Supported Beam Bridge[J].Journal of Architecture and Civil Engineering,2014,31(05):124.
[6]韦建刚,黄 蕾,李佩元,等.旧空心板简支梁桥的连续化改造加固研究[J].建筑科学与工程学报,2014,31(04):103.
 WEI Jian-gang,HUANG Lei,LI Pei-yuan,et al.Research on Continuous Transformation and Reinforcement for Old Simply Supported Hollow Slab Bridge[J].Journal of Architecture and Civil Engineering,2014,31(05):103.
[7]周 帅,曾永平,杨国静,等.桥梁箱型吊杆涡振与驰振耦合振动的数值模拟[J].建筑科学与工程学报,2015,32(02):84.
 ZHOU Shuai,ZENG Yong-ping,YANG Guo-jing,et al.Numerical Simulation on Coupled Vibration of Vortex-induced Vibration and Galloping Vibration for Box Hangers of Bridges[J].Journal of Architecture and Civil Engineering,2015,32(05):84.
[8]赵士良,韩万水,鲁永飞,等.重载交通条件下装配式RC板桥抗裂性分析[J].建筑科学与工程学报,2015,32(04):73.
 ZHAO Shi-liang,HAN Wan-shui,LU Yong-fei,et al.Crack Resistance Analysis on Prefabricated RC Slab Bridge Under Heavy Traffic[J].Journal of Architecture and Civil Engineering,2015,32(05):73.
[9]贡金鑫,江力财,赵尚传,等.桥梁拉吊索用不锈钢钢丝腐蚀性能及斜拉索时变可靠度研究[J].建筑科学与工程学报,2015,32(05):8.
 GONG Jin-xin,JIANG Li-cai,ZHAO Shang-chuan,et al.Study on Corrosion Properties of Stainless Steel Wire for Cable Use and Time-variant Reliability of Stay Cable of Bridge[J].Journal of Architecture and Civil Engineering,2015,32(05):8.
[10]李立峰,刘守苗,吴文朋.氯离子侵蚀效应对RC桥墩抗震性能的影响[J].建筑科学与工程学报,2015,32(05):56.
 LI Li-feng,LIU Shou-miao,WU Wen-peng.Influence of Chloride Ion Corrosion on Seismic Performance of Reinforced Concrete Piers[J].Journal of Architecture and Civil Engineering,2015,32(05):56.

备注/Memo

备注/Memo:
收稿日期:2024-08-25 投稿网址:http://jace.chd.edu.cn
基金项目:江苏省科技计划专项(BZ2024047); 宁波市“科创甬江2035”重点研发计划项目(2024H013); 宁波市公益性科技计划项目(2023S050)
作者简介:付传清(1982-),男,工学博士,教授,博士生导师,E-mail:chuanqingfu@126.com。
通信作者:舒江鹏(1987-),男,工学博士,研究员,博士生导师,E-mail:jpeshu@zju.edu.cn。
Author resumes: FU Chuanqing(1982-), male, PhD, professor, E-mail: chuanqingfu@126.com; SHU Jiangpeng(1987-), male, PhD, research fellow, E-mail: jpshu@zju.edu.cn.
更新日期/Last Update: 2025-09-25