|本期目录/Table of Contents|

[1]屈俊童,浦钧翔,王文彬,等.水泥-磷石膏固化泥炭质土的力学性能及本构模拟[J].建筑科学与工程学报,2025,42(05):181-190.[doi:10.19815/j.jace.2024.05011]
 QU Juntong,PU Junxiang,WANG Wenbin,et al.Mechanical properties and constitutive simulation of cement-phosphogypsum stabilized peaty soil[J].Journal of Architecture and Civil Engineering,2025,42(05):181-190.[doi:10.19815/j.jace.2024.05011]
点击复制

水泥-磷石膏固化泥炭质土的力学性能及本构模拟(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年05期
页码:
181-190
栏目:
岩土工程
出版日期:
2025-09-30

文章信息/Info

Title:
Mechanical properties and constitutive simulation of cement-phosphogypsum stabilized peaty soil
文章编号:
1673-2049(2025)05-0181-10
作者:
屈俊童1,浦钧翔1,王文彬1,刘新月1,屈林河2
(1. 云南大学 建筑与规划学院,云南 昆明 650504; 2. 云南省城乡规划设计研究院,云南 昆明 650228)
Author(s):
QU Juntong1, PU Junxiang1, WANG Wenbin1, LIU Xinyue1, QU Linhe2
(1. School of Architecture and Planning, Yunnan University, Kunming 650504, Yunnan, China; 2. Yunnan Institute of Urban and Rural Planning and Design, Kunming 650228, Yunnan, China)
关键词:
泥炭质土 水泥-磷石膏复合固化剂 力学性能 本构模型
Keywords:
peaty soil cement-phosphogypsum composite curing agent mechanical property constitutive model
分类号:
TU447
DOI:
10.19815/j.jace.2024.05011
文献标志码:
A
摘要:
为改善泥炭质土的不良工程性质,分别采用单掺水泥和混掺水泥-磷石膏复合固化剂两种方式对泥炭质土进行固化处理,通过无侧限抗压试验和三轴固结不排水剪切试验研究了不同固化剂掺量和围压对改良泥炭质土力学特性的影响,并取部分试样进行扫描电镜(SEM)和XRD物相分析试验,分析固化剂的反应机理。结果表明:水泥-磷石膏复合固化剂对泥炭质土的改良效果优于单掺水泥,磷石膏与水泥水化产物反应生成钙矾石,增强了土体的结构性,使土体的强度和刚度得到进一步提升; 然而过量的磷石膏并不会使钙矾石结晶增多,反而使土体的强度下降; 当水泥掺量为土样质量的20%时,磷石膏的最优掺量为水泥质量的30%; 增大水泥掺量能使土体黏聚力增长,却使内摩擦角发生小幅下降; 磷石膏的掺入使土体黏聚力增幅更大,但内摩擦角基本保持不变; 固化剂掺量的增加使得土体的应力-应变关系转变为应变软化型,邓肯-张模型对软化型曲线的模拟效果并不理想,基于Weibull分布的统计损伤本构模型更为适用。
Abstract:
In order to improve the poor engineering properties of peaty soil, both single-mixed cement and cement-phosphogypsum composite curing agent were utilized. The effects of different curing agent mixtures and confining pressures on the mechanical properties of treated peaty soils were investigated through unconfined compressive test and triaxial consolidation undrained shear test. Additionally, some specimens were taken for scanning electron microscopy(SEM)and XRD physical phase analysis to analyze the reaction mechanisms of the curing agents. The results show that the cement-phosphogypsum composite curing agent is more effective at enhancing peaty soil than cement alone. The reaction between phosphogypsum and the hydration products of cement produces ettringite, which enhances the soil's structural property, and improves the soil's strength and stiffness. However, an excessive amount of phosphogypsum does not increase the crystallization of ettringite but rather decreases the soil's strength. The optimal phosphogypsum dosage is 30% of the cement mass when the cement dosage is 20% of the soil sample mass. Increasing the cement content can increase the cohesion of the soil, but make the internal friction angle decrease slightly. The incorporation of phosphogypsum increases the cohesion of the soil, but the internal friction angle remains basically unchanged. The increase of curing agent content makes the stress-strain relationship of soil change into strain softening type. The simulation effect of Duncan-Chang model on softening type curve is not ideal, and the statistical damage constitutive model based on Weibull distribution is more suitable.

参考文献/References:

[1] 王志良,王竟宇,申林方,等.红黏土置换作用对水泥固化泥炭土强度的影响[J].建筑材料学报,2019,22(1):87-93.
WANG Zhiliang, WANG Jingyu, SHEN Linfang, et al. Effect of red clay replacement on strength of cement stabilized peaty soil[J]. Journal of Building Materials, 2019, 22(1): 87-93.
[2]佴 磊,苏占东,徐丽娜,等.中国主要沼泽草炭土的形成环境及分布特征[J].吉林大学学报(地球科学版),2012,42(5):1477-1484.
NIE Lei, SU Zhandong, XU Lina, et al. Formation environment and distribution characteristics of main swamp turfy soil in China[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(5):1477-1484.
[3]力乙鹏,李 婷.土壤固化剂的固化机理与研究进展[J].材料导报,2020,34(增2):1273-1277,1298.
LI Yipeng, LI Ting. Stability mechanism and research progress of soil stabilizer[J]. Materials Reports, 2020, 34(S2): 1273-1277, 1298.
[4]杜 娟,刘冰洋,申彤彤,等.有机质浸染砂水泥土的力学特性及本构关系[J].农业工程学报,2020,36(2):140-147.
DU Juan, LIU Bingyang, SHEN Tongtong, et al. Mechanical properties and constitutive relation of cement-stabilized organic matter-disseminated sand[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 140-147.
[5]TREMBLAY H, DUCHESNE J, LOCAT J, et al. Influence of the nature of organic compounds on fine soil stabilization with cement[J]. Canadian Geotechnical Journal, 2002, 39(3): 535-546.
[6]杨斌财,刘维正,余 勇,等.初始含水率和有机质对水泥土强度影响规律试验研究[J].铁道科学与工程学报,2023,20(10):3798-3808.
YANG Bincai, LIU Weizheng, YU Yong, et al. Experimental study on the influence of initial water content and organic matter on the strength of cement soil[J]. Journal of Railway Science and Engineering, 2023, 20(10): 3798-3808.
[7]阮永芬,杨 冰,吴 龙,等.化学改良湖相泥炭质土的配合比设计及其应用[J].硅酸盐通报,2021,40(7):2240-2247.
RUAN Yongfen, YANG Bing, WU Long, et al. Mixture ratio design and application of chemically improved lake peat soil[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2240-2247.
[8]LEONG E C,ERIKTIUS D T.Improvement of peaty soils with municipal solid waste fly ash[J]. Environmental Geotechnics, 2014, 1(4): 200-209.
[9]阮 波,阮晨希,邓林飞,等.聚丙烯纤维加筋水泥搅拌土拉压性能试验研究[J].铁道科学与工程学报,2021,18(1):95-103.
RUAN Bo, RUAN Chenxi, DENG Linfei, et al. Experimental study on unconfined compressive strength and splitting tensile strength of polypropylene fiber reinforced cement mixing soil[J]. Journal of Railway Science and Engineering, 2021, 18(1): 95-103.
[10]BALDOVINO J D J A, NUÑEZ DE LA ROSA Y E, CALABOKIS O P. Effect of porosity/binder index on strength, stiffness and microstructure of cemented clay: the impact of sustainable development geomaterials[J]. Materials, 2024, 17(4): 921.
[11]李建军,梁仁旺.水泥土抗压强度和变形模量试验研究[J].岩土力学,2009,30(2):473-477.
LI Jianjun, LIANG Renwang. Research on compression strength and modulus of deformation of cemented soil[J]. Rock and Soil Mechanics, 2009, 30(2): 473-477.
[12]戴玉明,贺佐跃.基于三轴试验的水泥土抗剪强度参数分析[J].交通科学与工程,2024,40(3):65-73.
DAI Yuming, HE Zuoyue. Analysis of shear strength parameters of soil-cement based on triaxial test[J]. Journal of Transport Science and Engineering, 2024, 40(3): 65-73.
[13]DA SILVA A, MIGUEL G D, DARONCO J V L, et al. Influence of curing under stress on the geomechanical response of cemented iron ore mining tailings subjected to distinct effective stress paths[J]. International Journal of Geomechanics, 2024, 24(8): 04024159.
[14]OCHEME J I, KIM J, MOON S W. Enhancing geomechanical characteristics of calcium sulfoaluminate(CSA)cement-treated soil under low confining pressures[J]. Scientific Reports, 2024, 14: 11618.
[15]土工试验方法标准:GB/T 50123—2019[S].北京:中国计划出版社,2019.
Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019.
[16]梁仁旺,张 明,白晓红.水泥土的力学性能试验研究[J].岩土力学,2001,22(2):211-213.
LIANG Renwang, ZHANG Ming, BAI Xiaohong. Analysis of laboratory test results of cemented soil[J].Rock and Soil Mechanics, 2001, 22(2): 211-213.
[17]ZHANG S, LIU J Y, DING J W, et al. Effect of recycled phosphogypsum and calcium aluminate cement on the strength behavior optimization of cement-treated dredged soil:a co-utilization of solid wastes[J]. Journal of Environmental Management, 2024, 353: 120020.
[18]魏小凡.利用磷石膏制备土壤固化剂及其固化土性能研究[D].重庆:重庆大学,2022.
WEI Xiaofan. Preparation of soil stabilizer by phosphogypsum and study on the properties of stabilized soil[D]. Chongqing: Chongqing University, 2022.
[19]彭家惠,楼宗汉.钙矾石形成机理的研究[J].硅酸盐学报,2000,28(6):511-515.
PENG Jiahui, LOU Zonghan. Study on the mechanism of ettringite formation[J]. Journal of the Chinese Ceramic Society, 2000, 28(6): 511-515.
[20]郑 兵.二水磷石膏粉煤灰复合胶凝材料的改性研究[D].武汉:武汉理工大学,2011.
ZHENG Bing. Study on modification of phosphogypsum-fly ash binder[D]. Wuhan: Wuhan University of Technology, 2011.
[21]王 伟,池旭超,张 芳,等.冻融循环对滨海软土三轴应力应变曲线软化特性的影响[J].岩土工程学报,2013,35(增2):140-144.
WANG Wei, CHI Xuchao, ZHANG Fang, et al. Effect of freeze-thaw circles on softening behaviors of triaxial stress-strain curve of costal soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 140-144.
[22]陈开圣,张 坤,胡 兴,等.磷石膏稳定土临界动应力及累积变形特性研究[J].建筑科学与工程学报,2023,40(6):170-180.
CHEN Kaisheng, ZHANG Kun, HU Xing, et al. Study on critical dynamic stress and cumulative deformation characteristics of phosphogypsum stabilized soil[J]. Journal of Architecture and Civil Engineering, 2023, 40(6): 170-180.
[23]DHAR S, DIXIT P M, SETHURAMAN R. A continuum damage mechanics model for ductile fracture[J]. International Journal of Pressure Vessels and Piping, 2000, 77(6): 335-344.
[24]陈 鑫,张 泽,李东庆.水泥土强度特性和损伤本构模型研究[J].湖南大学学报(自然科学版),2020,47(7):109-119.
CHEN Xin, ZHANG Ze, LI Dongqing. Study on strength characteristics and damage constitutive model of cemented soil[J]. Journal of Hunan University(Natural Sciences), 2020, 47(7): 109-119.
[25]LI S Y, LAI Y M, ZHANG S J, et al. An improved statistical damage constitutive model for warm frozen clay based on Mohr-Coulomb criterion[J]. Cold Regions Science and Technology, 2009, 57(2/3): 154-159.
[26]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231.
CAO Wengui, ZHAO Minghua, LIU Chengxue. Study on the model and its modifying method for rock softening and damage based on Weibull random distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3226-3231.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-05-07 投稿网址:http://jace.chd.edu.cn
基金项目:国家自然科学基金地区项目(52168038); 云南省科技厅基础研究项目(202301AT070192)
作者简介:屈俊童(1978-),男,工学博士,教授,E-mail:ern3632@163.com。
Author resume: QU Juntong(1978-), male, PhD, professor, E-mail: ern3632@163.com.
更新日期/Last Update: 2025-09-25