|Table of Contents|

Finite Element Analysis of Cold-formed Thin-walled Steel Three Open Limbs Built-up Columns Under Axial Compression(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2011年03期
Page:
119-126
Research Field:
Publishing date:
2011-09-20

Info

Title:
Finite Element Analysis of Cold-formed Thin-walled Steel Three Open Limbs Built-up Columns Under Axial Compression
Author(s):
LIU Xiang-bin1 ZHOU Tian-hua2 NIE Shao-feng2 WU Han-heng2
1. Infrastructure Projects Office, Chang'an University, Xi'an 710064, Shaanxi, China; 2. School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China
Keywords:
cold-formed thin-walled steel built-up column ultimate bearing capacity nonlinear finite element axial compression performance
PACS:
TU392.1
DOI:
-
Abstract:
The finite element model involving materials nonlinearity, geometric nonlinearity and contact nonlinearity was established, the influences of slenderness ratios, screw connection spacings, maximum width-thickness ratios on cold-formed thin-walled steel three open limbs built-up columns under axial compression were analyzed by using ANSYS finite element program. Results show that the slenderness ratio has great influence on the bearing capacity of axial compression and the axial compression performance for class A, B section built-up columns, with the increase of the column slenderness ratio, the ultimate bearing capacity gradually decreases. For two class section built-up columns, when screw connection spacing has arranged 450,300,150 mm, the ultimate bearing capacity of axial compression and the rigidity are little affected. For the three different lengths to the two class section built-up columns, as different thicknesses of the basic component plates cause different width-thickness ratios of the section, the ultimate bearing capacity of axial compression and the rigidity are obviously affected. When length and thickness of class A, B section built-up columns are same, and the basic component web height is increased from 89 mm to 140 mm, the ultimate bearing capacity of axial compression is not obviously improved.

References:

[1] 周绪红,石 宇,周天华,等.低层冷弯薄壁型钢结构住宅体系[J].建筑科学与工程学报,2005,22(2):1-14. ZHOU Xu-hong,SHI Yu,ZHOU Tian-hua,et al.Columns and Maximum Width-thickness Ratios of PlatesCold-formed Steel Framing System of Low-rise Residential Building[J].Journal of Architecture and Civil Engineering,2005,22(2):1-14.
[2]YU W W.Cold Formed Steel Design[M].3rd ed.New York:John Wiley & Sons,2000.
[3]陈精一,蔡国忠.电脑辅助工程分析——ANSYS使用指南[M].北京:中国铁道出版社,2001. CHEN Jing-yi,CAI Guo-zhong.Computer Aided Engineering Analysis—ANSYS Using Guide[M].Beijing:China Railway Publishing House,2001.
[4]GB 50017—2003,钢结构设计规范[S]. GB 50017—2003,Steel Structure Design Code[S].
[5]王士奇,董 军.轴心受压冷成型厚壁钢构件非线性有限元分析[J].建筑结构,2004,34(增1):349-352. WANG Shi-qi,DONG Jun.Cold Forming Axial Compression Thick Wall Steel Components Nonlinear Finite Element Analysis[J].Building Structure,2004,34(S1):349-352.
[6]王 广.冷弯薄壁卷边槽钢受压畸变屈曲性能分析[D].杭州:浙江大学,2007. WANG Guang.Analysis of Distortional Buckling of Cold-formed Thin-walled Lipped Channel Column[D].Hangzhou:Zhejiang University,2007.
[7]刘向斌.开口三肢冷弯薄壁型钢拼合立柱轴压承载力试验与理论研究[D].西安:长安大学,2010. LIU Xiang-bin.Experimental and Theoretical Research on Axial Compression Bearing Capacity of Three Limbs Open Section Built-up Cold-formed Steel Columns[D].Xi'an:Chang'an University,2010.
[8]张朝晖.ANSYS 11.0 结构分析工程应用实例解析[M].2版.北京:机械工业出版社,2008. ZHANG Zhao-hui.ANSYS 11.0 Structure Analysis Engineering Application Examples to Analyze[M].2nd ed.Beijing:China Machine Press,2008.
[9]祝效华,余志祥.ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社,2004. ZHU Xiao-hua YU Zhi-xiang.ANSYS Finite Elem-ent Analysis of the Senior Project Examples Selection[M].Beijing:Publishing House of Electronics Industry,2004.
[10]徐鹤山.ANSYS在建筑工程中的应用[M].北京:机械工业出版社,2005. XU He-shan.ANSYS in the Construction Engineering Application[M].Beijing:China Machine Press,2005.
[11]蒋友琼.非线性有限元法[M].北京:清华大学出版社,2002. JIANG You-qiong.The Nonlinear Finite Element Method[M].Beijing:Tsinghua University Press,2002.
[12]刘 涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002. LIU Tao,YANG Feng-peng.Proficient in ANSYS[M].Beijing:Tsinghua University Press,2002.
[13]李晓莉,常玉珍,吴敏哲.异形柱和短肢剪力墙的轴压比限值比较分析[J].西安建筑科技大学学报:自然科学版,2010,42(4):504-508. LI Xiao-li,CHANG Yu-zhen,WU Min-zhe.Comparative Analysis on the Axial Compression Ratio Limit of the Special-shape Column and the Short-shear Wall[J].Journal of Xi'an University of Architecture & Technology:Natural Science Edition,2010,42(4):504-508.
[14]张淑云,白国良,赵来顺.高层混合结构筒体厚度优化设计[J].西安科技大学学报,2010,30(2):175-181. ZHANG Shu-yun,BAI Guo-liang,ZHAO Lai-shun.Optimal Design of Core Thickness of Hybrid Struc- tures in High-rise Buildings[J].Journal of Xi'an Uni- versity of Science and Technology,2010,30(2):175-181.
[15]贡金鑫,李金波,程 玲.锈蚀钢筋混凝土圆柱加固后的抗震性能[J].中国公路学报,2010,23(6):41-48. GONG Jin-xin,LI Jin-bo,CHENG Ling.Seismic Behavior of Strengthened Corrosion-damaged Circular Reinforced Concrete Columns[J].China Journal of Highway and Transport,2010,23(6):41-48.
[16]狄 谨,周绪红,孔祥福,等.波形钢腹板预应力混凝土组合箱梁试验[J].长安大学学报:自然科学版,2009,29(5):64-70. DI Jin,ZHOU Xu-hong,KONG Xiang-fu,et al.Experimental Research on Pre-stressed Concrete Composite Box Girders with Corrugated Steel Webs[J].Journal of Chang'an University:Natural Science Edition,2009,29(5):64-70.
[17]周绪红,林新元,谭冬莲,等.波纹钢腹板组合箱梁疲劳试验[J].中国公路学报,2010,23(4):33-38. ZHOU Xu-hong,LIN Xin-yuan,TAN Dong-lian,et al.Fatigue Test of Composite Box Beams with Corrugated Steel Webs[J].China Journal of Highway and Transport,2010,23(4):33-38.
[18]任红伟,刘保东,陈海波.波纹钢腹板混凝土箱梁的扭转振动分析[J].中国公路学报,2008,21(6):64-68. REN Hong-wei,LIU Bao-dong,CHEN Hai-bo.Analysis of Torsional Vibration of Concrete Box-girder with Corrugated Steel Webs[J].China Journal of Highway and Transport,2008,21(6):64-68.

Memo

Memo:
-
Last Update: 2011-09-20