|Table of Contents|

Surface Settlement Law of Double-line Tunnel Based on DEM(PDF)


Research Field:
Publishing date:


Surface Settlement Law of Double-line Tunnel Based on DEM
RUI Rui1 WANG Lei1 TU Shu-jie1 WANG Kang-yu2
(1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China; 2. School of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China)
double-line tunnel surface settlement DEM Trapdoor test Peck formula
In order to study the law of surface settlement caused by tunnel excavation, the Trapdoor test was simulated using PFC2D software, and the surface settlement law and its influencing factors caused by double-line tunnel excavation were systematically studied by subsidence door sinking. The calculating parameters of numerical model were gotten based on repose angle test and single Trapdoor model test. The surface settlement curve was obtained by carrying out single Trapdoor numerical test, and Peck formula parameters of surface settlement caused by single-line tunnel excavation were fitted. The double Trapdoor numerical experiment of simultaneous excavation was carried out. The prediction formula of surface settlement caused by double-line tunnel excavation was obtained by superposition of single Trapdoor parameters, and the fitting results were compared with those of simple superposition formula. Finally, the double Trapdoor numerical experiments of excavation were carried out, and the influences of tunnel spacing, depth and excavation sequence of double-line tunnels on surface settlement were revealed. The results show that with the increase of tunnel depth and the decrease of tunnel spacing, the surface settlement curve transits from “W”shape to “V”shape. The surface settlement curves caused by double-line tunnels under excavation conditions are asymmetrical, and the maximum surface settlement occurs on the side of the first tunnel. With the increase of tunnel burial depth, the difference of maximum value between two sides of surface settlement curve tends to increase. The fitting results of Peck formula are in good agreement with DEM numerical model and model test results. It can be used to predict surface settlement caused by double-track tunnel excavation, and has important theoretical guidance and engineering significance.


[1] 台启民,张顶立,房 倩,等.暗挖重叠地铁隧道地表变形特性分析[J].岩石力学与工程学报,2014,33(12):2472-2480.
TAI Qi-min,ZHANG Ding-li,FANG Qian,et al.Analysis of Ground Surface Deformation Induced by Excavation of Crossing Metro Tunnels in Urban Underground[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(12):2472-2480.
[2]魏 纲,叶 琦,虞兴福.杭州地铁盾构隧道掘进对建筑物影响的实测分析[J].现代隧道技术,2015,52(3):150-159.
WEI Gang,YE Qi,YU Xing-fu.Field Monitoring and Analysis of the Influence of Shield Tunnelling for the Huangzhou Metro on Existing Buildings[J].Modern Tunnelling Technology,2015,52(3):150-159.
[3]王 帅,孙少锐,舒 杨,等.双线浅埋隧道远近距离界定及地表沉降机理研究[J].长江科学院院报,2017,34(9):115-121.
WANG Shuai,SUN Shao-rui,SHU Yang,et al.Critical Distance of Shallow Twin Tunnels and Ground Surface Settlements Caused by Tunneling[J].Journal of Yangtze River Scientific Research Institute,2017,34(9):115-121.
[4]PECK R B.Deep Excavations and Tunneling in Soft Ground[C]//MORETTO O,PECK R B,ALBERRO J,et al.Proceedings of the 7th International Conference of Soil Mechanics & Foundation Engineering.Mexico City:Balkema A A,1969:225-290.
FANG En-quan,YANG Ling-zhi,LI Peng-fei.Prediction of Ground Settlement Induced by Metro Shield Construction Based on the Modified Peck Formula[J].Modern Tunnelling Technology,2015,52(1):143-149,162.
[6]SUWANSAWAT S,EINSTEIN H H.Describing Settlement Troughs over Twin Tunnels Using a Superposition Technique[J].Journal of Geotechnical and Geoenvironmental Engineering,2007,133(4):445-465.
[7]陈春来,赵城丽,魏 纲,等.基于Peck公式的双线盾构引起的土体沉降预测[J].岩土力学,2014,35(8):2212-2218.
CHEN Chun-lai,ZHAO Cheng-li,WEI Gang,et al.Prediction of Soil Settlement Induced by Double-line Shield Tunnel Based on Peck formula[J].Rock and Soil Mechanics,2014,35(8):2212-2218.
[8]吴华君,魏 纲.近距离双线平行盾构施工引起的土体沉降计算[J].现代隧道技术,2014,51(2):63-69,75.
WU Hua-jun,WEI Gang.The Calculation of Soil Settlement Induced by Construction of Twin Parallel Shield Tunnels with a Small-interval[J].Modern Tunnelling Technology,2014,51(2):63-69,75.
[9]CORDING E J,HANSMIRE W H.Displacements Around Soft Ground Tunnels[C]//GIULIANI F,RODRIGUEZ M,ARCHILLA F.Proceedings of the 5th Pan American Conference on Soil Mechanics and Foundation Engineering.Buenos Aires:Argentine Society for Soil Mechanics and Foundation Engineering,1975:517-632.
[10]韩 煊,李 宁,STANDING J R.Peck公式在我国隧道施工地面变形预测中的适用性分析[J].岩土力学,2007,28(1):23-28,35.
HAN Xuan,LI Ning,STANDING J R.An Adaptability Study of Gaussian Equation Applied to Predicting Ground Settlements Induced by Tunneling in China[J].Rock and Soil Mechanics,2007,28(1):23-28,35.
[11]胡 斌,刘永林,唐辉明,等.武汉地铁虎泉——名都区间隧道开挖引起的地表沉降研究[J].岩石力学与工程学报,2012,31(5):908-913.
HU Bin,LIU Yong-lin,TANG Hui-ming,et al.Research on Ground Subsidence Due to Tunnel Excavation in Huquan — Mingdu Section of Wuhan Subway[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(5):908-913.
[12]虞兴福,任 辉,胡向东.杭州地铁1号线盾构掘进对周围土体扰动分析[J].现代隧道技术,2014,51(5):166-173.
YU Xing-fu,REN Hui,HU Xiang-dong.Analysis of the Disturbance to Surrounding Soils During Shield Driving for the Hangzhou Metro Line 1 Project[J].Modern Tunnelling Technology,2014,51(5):166-173.
[13]朱才辉,李 宁.地铁施工诱发地表最大沉降量估算及规律分析[J].岩石力学与工程学报,2017,36(增1):3543-3560.
ZHU Cai-hui,LI Ning.Estimation and Regularity Analysis of Maximal Surface Settlement Induced by Subway Construction[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(S1):3543-3560.
[14]TERZAGHI K.Stress Distribution in Dry and in Saturated Sand Above a Yielding Trap-door[C]//TERZAGHI K.Proceeding of the International Conference on Soil Mechanics and Foundation Engineering.Boston:Harvard University,1936:307-311.
[15]COSTA Y D,ZOMBERG J G,BUENO B S,et al.Failure Mechanisms in Sand over a Deep Active Trapdoor[J].Journal of Geotechnical and Geoenvironmental Engineering,2009,135(11):1741-1753.
[16]RUI R,VAN TOL F,XIA Y Y,et al.Evolution of Soil Arching,2D Analytical Models[J].International Journal of Geomechanics,2018,18(6):04018056.
[17]RUI R,HAN J,VAN EEKELEN S J M,et al.Experimental Investigation of Soil-arching Development in Unreinforced and Geosynthetic-reinforced Pile-supported Embankments[J].Journal of Geotechnical and Geoenvironmental Engineering,2019,145(1):04018103.
[18]ADACHI T,KIMURA M,KISHIDA K.Experimental Study on the Distribution of Earth Pressure and Surface Settlement Through Three-dimensional Trapdoor Tests[J].Tunnelling and Underground Space Technology,2003,18(2/3):171-183.
[19]THONGPRAPHA T,FUENKAJORN K,DAEMEN J J K.Study of Surface Subsidence Above an Underground Opening Using a Trap Door Apparatus[J].Tunnelling and Underground Space Technology,2015,46:94-103.
[20]徐路畅,芮 瑞,张 龙,等.基于Trapdoor试验的双线隧道地表沉降预测公式探讨[J].岩土工程学报,2017,39(8):1470-1476.
XU Lu-chang,RUI Rui,ZHANG Long,et al.Prediction Formula for Surface Settlement in Double-line Tunnel Based on Trapdoor Tests[J].Chinese Journal of Geotechnical Engineering,2017,39(8):1470-1476.
[21]林 志,朱合华,夏才初.双线盾构隧道施工过程相互影响的数值研究[J].地下空间与工程学报,2009,5(1):85-89,132.
LIN Zhi,ZHU He-hua,XIA Cai-chu.Numerical Modeling Study on Interaction Between Twin Shields Tunneling[J].Chinese Journal of Underground Space and Engineering,2009,5(1):85-89,132.
[22]NG C W W,BOONYARAK T,MASIN D.Three-dimensional Centrifuge and Numerical Modeling of the Interaction Between Perpendicularly Crossing Tunnels[J].Canadian Geotechnical Journal,2013,50(9):935-946.
[23]任 强,杨春英,徐 薇.地表沉降的双洞体叠加Peck公式及数值分析[J].安徽理工大学学报:自然科学版,2013,33(4):78-82.
REN Qiang,YANG Chun-ying,XU Wei.The Peck Formula and Numerical Analysis of Surface Subsidence Caused by Tunnel Excavation[J].Journal of Anhui University of Science and Technology:Natural Science,2013,33(4):78-82.
[24]刘 波,陶龙光,丁城刚,等.地铁双隧道施工诱发地表沉降预测研究与应用[J].中国矿业大学学报,2006,35(3):356-361.
LIU Bo,TAO Long-guang,DING Cheng-gang,et al.Prediction for Ground Subsidence Induced by Subway Double Tube Tunneling[J].Journal of China University of Mining & Technology,2006,35(3):356-361.
[25]RUI R,VAN TOL A F,XIA Y Y,et al.Investigation of Soil-arching Development in Dense Sand by 2D Model Tests[J].Geotechnical Testing Journal,2016,39(3):415-430.
[26]MAIR R J,TAYLOR R N.Bored Tunnelling in the Urban Environment[C]//International Society for Soil Mechanics and Foundation Engineering.Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering.Rotterdam:Balkema A A,1998:2353-2385.


Last Update: 2019-07-26