|本期目录/Table of Contents|

[1]王超逸,封建湖.拓扑优化中水平集方法的局限性及改进方法[J].建筑科学与工程学报,2011,28(02):119-126.
 WANG Chao-yi,FENG Jian-hu.Weakness of Level Set Method in Topology Optimization and Its Improvement[J].Journal of Architecture and Civil Engineering,2011,28(02):119-126.
点击复制

拓扑优化中水平集方法的局限性及改进方法(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
28卷
期数:
2011年02期
页码:
119-126
栏目:
出版日期:
2011-06-20

文章信息/Info

Title:
Weakness of Level Set Method in Topology Optimization and Its Improvement
作者:
王超逸1,2,封建湖1
1. 长安大学 理学院,陕西 西安 710064; 2. 鞍山钢铁集团公司,辽宁 鞍山 114009
Author(s):
WANG Chao-yi1,2, FENG Jian-hu1
1. School of Sciences, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Anshan Iron & Steel Group Corporation, Anshan 114009, Liaoning, China
关键词:
拓扑优化 水平集方法 拓扑导数 有限元法
Keywords:
topology optimization level set method topology derivative finite element method
分类号:
TU311
DOI:
-
文献标志码:
A
摘要:
提出了一种基于拓扑导数的水平集方法,利用拓扑导数在材料的内部生成新的孔,再运用水平集方法移动和融合新生成的孔,克服了传统水平集方法的缺点并保留其优点; 通过数值算例展示了传统水平集方法的缺点和新方法拓扑优化问题的改进效果。结果表明:提出的拓扑导数水平集算法简单有效,可以进行连续体结构的拓扑优化设计。
Abstract:
Structural topology optimization has been identified as one of the most challenging tasks in structural design. Level set method has many merits on topological optimization problems. But it also has some defects. For example, the higher dependence on initial topology of complex structures, in which proper number and position of holes are included, cannot be determined in advance. Furthermore, in order to greatly improve computational efficiency, another topology optimization method, we called it topology derivative-level set algorithm, was proposed by unifying topology derivative theory with the level set method. Numerical experiments illustrated the weakness of the traditional level set method and the improvement of the topology derivative-level set algorithm. The numerical results show that the topology derivative-level set algorithm can be used for topology optimization of continuum structures.

参考文献/References:

[1] OSHER S,SETHIAN J A.Fronts Propagating with Curvature-dependent Speed:Algorithm Based on Hamilton-Jacobi Formulations[J].Journal of Computational Physics,1988,79(1):12-49.
[2]SETHIAN J A.Level Set Methods and Fast Marching Methods:Evolving Interfaces in Computational Geometry,Fluid Mechanics,Computer Vision and Materials Science[M].Cambridge:Cambridge University Press,1999.
[3]SETHIAN J A,WIEGMANN A.Structural Boundary Design via Level Set and Immersed Interface Methods[J].Journal of Computational Physics,2000,163(2):489-528.
[4]SANTOSA S J,OSHER F.Level Set Methods for Optimization Problems Involving Geometry and Constraints I.Frequencies of a Two-density Inhomogeneous Drum[J].Journal of Computational Physics,2001,171(1):272-288.
[5]WANG M Y,WANG X M,GUO D M.A Level Set Method for Structural Topology Optimizations[J].Computer Methods in Applied Mechanics and En-gineering,2003,192(1/2):227-246.
[6]梅玉林.拓扑优化的水平集方法及其在刚性结构、柔性机构和材料设计中的应用[D].大连:大连理工大学,2003. MEI Yu-lin.A Level Set Method for Topological Optimization and Its Application in Stiff Structures,Compliant Mechanisms and Material Designs[D].Dalian:Dalian University of Technology,2003.
[7]赵 康.基于Level Set方法的结构优化技术[D].大连:大连理工大学,2005. ZHAO Kang.Structural Optimization Techniques Based on Level Set Methods[D].Dalian:Dalian University of Technology,2005.
[8]王超逸.水平集方法在连续体结构拓扑优化问题中的运用与发展[D].西安:长安大学,2008. WANG Chao-yi.Study on Level Set Method in Continuum Structures Topology Optimization[D].Xi'an:Chang'an University,2008.
[9]ESCHENAUER H A,KOBELEV V V,SCHUMACHER A.Bubble Method for Topology and Shape Optimization of Structures[J].Structural and Multidisciplinary Optimization,1994,8(1):42-51.
[10]SOKOLOWSKI J,ZOCHOWSKI A.On the Topological Derivative in Shape Optimization[J].SIAM Journal on Control and Optimization,1999,37(4):1251-1272.
[11]SOKOLOWSKI J,ZOCHOWSKI A.Topological Derivatives for Elliptic Equations[J].Inverse Problems,1999,15(1):123-134.
[12]GARREAU S,GUILLAUME P,MASMOUDI M.The Topological Asymptotic for PDE Systems:the Elasticity Case[J].SIAM Journal on Control and Optimization,2001,39(6):1756-1778.
[13]ALLAIRE G,DE GOURNAY F,JOUVE F,et al.Structural Optimization Using Topological and Shape Sensitivity and a Level Set Method[J]. Control via Cybernetics,2005,34(1):59-80.
[14]SIGMUND O.A 99 Line Topology Optimization Code Written in Matlab[J].Structural and Multidisciplinary Optimization,2001,21(2):120-127.
[15]任晓辉,封建湖.基于水平集方法的连续体结构拓扑优化[J].建筑科学与工程学报,2007,24(1):74-79. REN Xiao-hui, FENG Jian-hu.Topology Optimization of Continuum Structure Based on Level Set Method[J].Journal of Architecture and Civil Engin-eering,2007,24(1):74-79.

相似文献/References:

[1]任晓辉,封建湖.基于水平集方法的连续体结构拓扑优化[J].建筑科学与工程学报,2007,24(01):74.
 REN Xiao-hui,FENG Jian-hu.Topology Optimization of Continuum Structure Based on Level Set Method[J].Journal of Architecture and Civil Engineering,2007,24(02):74.

备注/Memo

备注/Memo:
收稿日期:2011-03-01
作者简介:王超逸(1983-),男,安徽淮南人,鞍山钢铁集团公司工程师,工学硕士,E-mail:wchyhuayun@163.com。
更新日期/Last Update: 2011-06-20