|本期目录/Table of Contents|

[1]康 婷,白应生,王 栋,等.弹性支撑拱结构的动力特性研究[J].建筑科学与工程学报,2015,32(02):77-83.
 KANG Ting,BAI Ying-sheng,WANG Dong,et al.Study on Dynamic Characteristics of Elastic Supported Arch Structures[J].Journal of Architecture and Civil Engineering,2015,32(02):77-83.
点击复制

弹性支撑拱结构的动力特性研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
32卷
期数:
2015年02期
页码:
77-83
栏目:
出版日期:
2015-03-30

文章信息/Info

Title:
Study on Dynamic Characteristics of Elastic Supported Arch Structures
作者:
康 婷白应生王 栋杨 慧孙惠香
空军工程大学航空航天工程学院
Author(s):
KANG Ting BAI Ying-sheng WANG Dong YANG Hui SUN Hui-xiang
School of Aeronautics and Astronautics Engineering, Air Force Engineering University
关键词:
结构工程动力特性哈密顿原理弹性支撑拱结构刚度系数
Keywords:
structure engineering dynamic characteristic Hamilton principle elastic support arch structure stiffness coefficient
分类号:
-
DOI:
-
文献标志码:
A
摘要:
以三次B样条函数的线性组合作为拱结构位移振型函数,根据哈密顿原理推导出了弹性支撑拱结构的频率方程,考虑了拱脚处集中质量的附加惯性力等因素的影响,计算分析了竖向弹性支撑和旋转弹性支撑对拱结构动力特性的影响,提出了竖向临界刚度系数的概念。研究结果表明:竖向弹性支撑会使拱结构的基本频率减小,当矢跨比为0.1左右时影响最为显著,同时还会改变拱结构振型序列特点;竖向临界刚度系数是拱结构动力特性的分界点,此时拱结构的基本频率和第二频率几乎相等,若竖向支撑刚度系数小于临界刚度系数,结构的第1阶振型是对称的,而第2阶振型是反对称的,与刚性支撑拱结构的振型序列不同;若竖向支撑刚度系数大于临界刚度系数,结构的第1阶振型是反对称的,而第2阶振型是对称的,与刚性支撑拱结构的振型序列相同;旋转弹性支撑会使拱结构的基本频率减小,但并不改变其振型序列特点。
Abstract:
The displacement mode shape function of the arch free vibration was simulated with a linear combination of cubic Bspline. The vibration frequency equation of the elastic supported arch structures was derived according to Hamilton principle, in which the additional inertia force of the lumped mass at the arch foot was taken into account. The influences of the vertical and rotational elastic supports on the dynamic characteristics of arch structure were studied. The concept of the vertical critical stiffness coefficient was put forward. The study results show that the vertical elastic supports decrease the natural frequency, and the influence is biggest when the risespan ratio is about 0.1. Meanwhile, the vibration mode sequence characteristics change. As the stiffness of the vertical elastic supports is same with the vertical critical stiffness coefficient, the natural frequency and the second frequency is almost equal. If the vertical support stiffness coefficient is less than the critical stiffness coefficient, the first vibration mode of structure is symmetrical, and the second vibration mode is antisymmetric. The vibration mode sequence characteristics are different from those of the arch with rigid supports. If the vertical support stiffness coefficient is greater than the critical stiffness coefficient, the first vibration mode is antisymmetric, while the second vibration mode is symmetrical. The vibration mode sequence characteristics are same with those of the arch with rigid supports. The rotational elastic supports will decrease the natural frequency of the arch structure, but will not change its vibration mode sequence characteristics.

参考文献/References:

-

相似文献/References:

[1]李加武,黄森华,王新.开口断面斜拉桥主梁动力特性的有限元简化计算[J].建筑科学与工程学报,2013,30(04):59.
 LI Jia-wu,HUANG Sen-hua,WANG Xin.Finite Element Simplified Computation for Dynamic Characteristics of Cable-stayed Bridge Girder with Opening Section[J].Journal of Architecture and Civil Engineering,2013,30(02):59.
[2]李加武,周 琴,黄森华.简支梁桥铅芯橡胶支座减震特性研究[J].建筑科学与工程学报,2014,31(03):124.
 LIU Xin-hua,LI Jia-wu,ZHOU Qin,et al.Research on Seismic Isolation Characteristics of LRB for Simply Supported Beam Bridge[J].Journal of Architecture and Civil Engineering,2014,31(02):124.
[3]黄 华,刘伯权,张彬彬,等.钢筋混凝土抗震框架连续倒塌行为分析[J].建筑科学与工程学报,2014,31(04):35.
 HUANG Hua,LIU Bo-quan,ZHANG Bin-bin,et al.Analysis of Progressive Collapse Behavior of Earthquakeresistant Reinforced Concrete Frame[J].Journal of Architecture and Civil Engineering,2014,31(02):35.
[4]张 岗,姜长安,刘 扬,等.单侧火灾下预应力混凝土多梁肋T型结构翘曲分析[J].建筑科学与工程学报,2015,32(02):52.
 ZHANG Gang,JIANG Chang-an,LIU Yang,et al.Analysis of Buckling for Prestressed Concrete Multi-beam T-shaped Structure[J].Journal of Architecture and Civil Engineering,2015,32(02):52.
[5]叶献国,李世东,蒋 庆,等.建筑信息模型方法学应用于结构工程领域的理论框架研究[J].建筑科学与工程学报,2015,32(03):103.
 YE Xian-guo,LI Shi-dong,JIANG Qing,et al.Research on Theory Framework of BIMmethodology Applied in Structure Engineering Field[J].Journal of Architecture and Civil Engineering,2015,32(02):103.
[6]谢建和,黄昆泓,李自坚,等.BFRP和CFRP加固受弯混凝土界面疲劳性能试验[J].建筑科学与工程学报,2015,32(04):53.
 XIE Jian-he,HUANG Kun-hong,LI Zi-jian,et al.Experiment on Fatigue Behaviors of Flexural Concrete Interface Strengthened with BFRP and CFRP[J].Journal of Architecture and Civil Engineering,2015,32(02):53.
[7]吴 涛,孙艺嘉,刘 喜.大气环境下轻骨料混凝土耐久性能研究综述[J].建筑科学与工程学报,2017,34(05):154.
 WU Tao,SUN Yi-jia,LIU Xi.Review on Durability of Lightweight Aggregate Concrete in Atmospheric Environment[J].Journal of Architecture and Civil Engineering,2017,34(02):154.
[8]肖海兵,赵均海,孙珊珊,等.方形薄壁钢管轻骨料混凝土短柱的承载力[J].建筑科学与工程学报,2010,27(02):83.
 XIAO Hai-bing,ZHAO Jun-hai,SUN Shan-shan,et al.Bearing Capacity of Short Column of Lightweight Aggregate Concrete-filled Square Thin-walled Steel Tube[J].Journal of Architecture and Civil Engineering,2010,27(02):83.
[9]许晶,贡金鑫.钢筋混凝土偏心受压构件二阶效应计算对比分析[J].建筑科学与工程学报,2010,27(03):65.
 XU Jing,GONG Jin-xin.Comparative Analysis of Second-order Effect on Eccentrically Compressed Reinforced Concrete Member[J].Journal of Architecture and Civil Engineering,2010,27(02):65.
[10]黄华,刘伯权,吴涛,等.结构工程抗倒塌设计研究综述[J].建筑科学与工程学报,2012,29(01):27.
 HUANG Hua,LIU Bo-quan,WU Tao,et al.Overview of Research on Collapse-resistant Design in Structure Engineering[J].Journal of Architecture and Civil Engineering,2012,29(02):27.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2015-03-31