|本期目录/Table of Contents|

[1]李帼昌,张洪恩,杨志坚,等.铝合金内芯装配式屈曲约束支撑有限元分析[J].建筑科学与工程学报,2019,36(02):56-63.
 LI Guo-chang,ZHANG Hong-en,YANG Zhi-jian,et al.Finite Element Analysis of Aluminum Alloy Core Assembled Bucking-restrained Braces[J].Journal of Architecture and Civil Engineering,2019,36(02):56-63.
点击复制

铝合金内芯装配式屈曲约束支撑有限元分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
36卷
期数:
2019年02期
页码:
56-63
栏目:
出版日期:
2019-03-26

文章信息/Info

Title:
Finite Element Analysis of Aluminum Alloy Core Assembled Bucking-restrained Braces
文章编号:
1673-2049(2019)02-0056-08
作者:
李帼昌,张洪恩,杨志坚,石先硕
(沈阳建筑大学 土木工程学院,辽宁 沈阳 110168)
Author(s):
LI Guo-chang, ZHANG Hong-en, YANG Zhi-jian, SHI Xian-shuo
(School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, Liaoning, China)
关键词:
有限元分析 铝合金内芯装配式屈曲约束支撑 集中耗能因子 宽厚比 螺栓间距 间隙
Keywords:
finite element analysis aluminum alloy core assembled buckling-restrained brace yield length ratio width-thickness ratio bolt spacing gap
分类号:
TU352.1
DOI:
-
文献标志码:
A
摘要:
提出了一种铝合金内芯装配式屈曲约束支撑(ALB),并以A5083铝合金为支撑耗能内芯设计了4组19个支撑构件,采用ABAQUS软件对其进行有限元分析,研究了集中耗能因子YLR、宽厚比、螺栓间距、核心板与约束板间间隙对支撑性能的影响。结果表明:当YLR<0.75时,支撑耗能性能会随着YLR的增加而提高,当YLR>0.75时,支撑耗能性能随着YLR的增加开始降低,当YLR=0.75时,支撑整体表现最佳; 支撑耗能性能会随着宽厚比的增加而降低,宽厚比不超过10时,支撑可以获得更好的耗能能力; 螺栓间距不宜过大,通过控制螺栓间距Lb与支撑核心板屈曲波长Lw的比值Lb/Lw来控制螺栓间距,当Lb/Lw≤1.5时,支撑约束单元受力更加合理,可以为核心单元提供足够的约束力; 核心板与约束单元之间的间隙过小时无法为核心板变形留有足够空间,间隙过大时支撑承载力会有较大降低且不稳定,间隙控制在0.5~2 mm时支撑承载能力表现更佳。
Abstract:
An aluminum alloy inner core assembled buckling-restrained braces(ALB)was proposed, and four groups and nineteen kinds of ALB by using A5083 aluminum alloy as the inner core of energy dissipation were designed, and the finite element analysis was carried out by ABAQUS software. The influences of yield length ratio YLR, width-thickness ratio, bolt spacing, gap between core plate and restraint plate on ALB performance were studied. The results show that when YLR<0.75, the energy dissipation performance of the buckling-restrained brace(BRB)increases with the increase of YLR, when YLR>0.75, the energy dissipation performance of the BRB begins to decrease as the YLR increases, when YLR=0.75, the overall performance of the BRB is the best. The energy dissipation performance of the BRB decreases with the increase of the width-thickness ratio, when the width-thickness ratio is no more than 10, the BRB can get better energy dissipation capability. The bolt spacing should not be too large. The bolt spacing is controlled by controlling the ratio of the bolt spacing Lb to the buckling wavelength Lw of the BRB core plate. When the Lb/Lw is not more than 1.5, the force of the constraint unit is more reasonable and can provide sufficient binding force for the core unit. The gap between the core plate and the constraint unit is too small to leave enough space for the deformation of the core plate. When the gap is too large, the bearing capacity will be greatly reduced and unstable. When the gap is controlled in 0.5-2 mm, the supporting capacity performance is better.

参考文献/References:

References:
[1] 王永贵.屈曲约束支撑及支撑框架结构抗震性能与设计方法研究[D].北京:中国矿业大学(北京),2014.
WANG Yong-gui.Research on Seismic Performance and Design Method of Buckling-restrained Brace and Brace-frame Structure[D].Beijing:China University of Mining & Technology(Beijing),2014.
[2]姜文伟,赵雪莲,包联进,等.世博博物馆主体结构设计[J].建筑钢结构进展,2017,19(5):22-29,90.
JIANG Wen-wei,ZHAO Xue-lian,BAO Lian-jin,et al.Design of Main Structure in Expo Museum[J].Progress in Steel Building Structures,2017,19(5):22-29,90.
[3]卢清刚,周祥茵,刘永豪,等.中关村国防科技园 A 栋综合楼超限结构设计[J].建筑结构,2017,47(13):63-68.
LU Qing-gang,ZHOU Xiang-yin,LIU Yong-hao,et al.Out-of-code Structural Design of Complex Building A of National Defense Science and Technology Park in Zhongguancun[J].Building Structure,2017,47(13):63-68.
[4]徐自然,苏 骏,崔家春,等.上海浦东国际机场三期扩建工程卫星厅消能减震项目抗震性能化分析[J].建筑结构,2017,47(12):23-28.
XU Zi-ran,SU Jun,CUI Jia-chun,et al.Seismic Performance Analysis on Energy Dissipation Satellite Hall of Shanghai Pudong International Airport Three Phase Expansion Project[J].Building Structure,2017,47(12):23-28.
[5]李国强,孙飞飞,陈素文,等.大吨位国产TJⅡ型屈曲约束支撑的研制与试验研究[J].建筑钢结构进展,2009,11(4):22-26.
LI Guo-qiang,SUN Fei-fei,CHEN Su-wen,et al.Development and Experimental Study of Large-tonnage Domestic TJⅡ Buckling-restrained Brace[J].Progress in Steel Building Structures,2009,11(4):22-26.
[6]TSAI K C,WU A C,WEI C Y,et al.Welded End-slot Connection and Debonding Layers for Buckling-restrained Braces[J].Earthquake Engineering & Structural Dynamics,2014,43(12):1785-1807.
[7]马 宁.全钢防屈曲支撑及其钢框架结构抗震性能与设计方法[D].哈尔滨:哈尔滨工业大学,2010.
MA Ning.Seismic Behavior and Design Method of All-steel Buckling Restrained Braces and Steel Frames[D].Harbin:Harbin Institute of Technology,2010.
[8]USAMI T,GE H B,KASAI A.Overall Buckling Prevention Condition of Buckling-restrained Braces as a Structural Control Damper[C]//WCEE.Proceedings of the 14th World Conference on Earthquake Engineering.Beijing:WCEE,2008:1-9.
[9]贾 斌,张其林,罗晓群,等.新型铝合金耗能支撑屈曲约束条件研究[J].地震工程学报,2014,36(3):495-503.
JIA Bin,ZHANG Qi-lin,LUO Xiao-qun,et al.Buckling Restraint Conditions for Innovative Aluminum Alloy Energy Dissipation Braces[J].China Earthquake Engineering Journal,2014,36(3):495-503.
[10]王国军,王祝堂.铝合金在中国民用航空器上的应用[J].轻合金加工技术,2017,45(11):1-11.
WANG Guo-jun,WANG Zhu-tang.Application of Aluminum Alloy on China's Civil Aircraft[J].Light Alloy Fabrication Technology,2017,45(11):1-11.
[11]李 龙,吕金明,严 安,等.铝合金装甲材料的应用及发展[J].兵器材料科学与工程,2017,40(6):105-113.
LI Long,LU Jin-ming,YAN An,et al.Application and Development of Aluminum Alloy Armor Materials[J].Ordnance Material Science and Engineering,2017,40(6):105-113.
[12]DE MATTEIS G,BRANDO G,MAZZOLANI F M.Pure Aluminium:An Innovative Material for Structural Applications in Seismic Engineering[J].Construction and Building Materials,2012,26(1):677-686.
[13]USAMI T,WANG C L,FUNAYAMA J.Developing High-performance Aluminum Alloy Buckling-restrained Braces Based on Series of Low-cycle Fatigue Tests[J].Earthquake Engineering & Structural Dynamics,2012,41(4):643-661.
[14]WANG C L,USAMI T,FUNAYAMA J,et al.Low-cycle Fatigue Testing of Extruded Aluminium Alloy Buckling-restrained Braces[J].Engineering Structures,2013,46:294-301.
[15]DUSICKA P,TINKER J.Global Restraint in Ultra-lightweight Buckling-restrained Braces[J].Journal of Composites for Construction,2013,17(1):139-150.
[16]贾 斌,张其林,罗晓群,等.铝合金芯板防屈曲耗能支撑滞回性能研究[J].建筑结构学报,2015,36(8):49-57.
JIA Bin,ZHANG Qi-lin,LUO Xiao-qun,et al.Study on Hysteretic Behavior of Aluminium Alloy Energy Dissipation Braces[J].Journal of Building Structures,2015,36(8):49-57.
[17]贾 斌,张其林,赖 伟,等.循环荷载作用下铝合金耗能支撑本构关系[J].上海交通大学学报,2016,50(11):1742-1747.
JIA Bin,ZHANG Qi-lin,LAI Wei,et al.Constitutive Relation of Aluminium Alloy Energy Dissipation Braces at Cyclic Loading[J].Journal of Shanghai Jiaotong University,2016,50(11):1742-1747.
[18]ANSI/AISC 341-10,Seismic Provisions for Structural Steel Buildings[S].
[19]周 云.防屈曲耗能支撑结构设计与应用[M].北京: 中国建筑工业出版社,2007
ZHOU Yun.Design and Application of Buckling-restrained Braced Structures[M].Beijing:China Architecture & Building Press,2007.
[20]JGJ 82—2011,钢结构高强度螺栓连接技术规程[S].
JGJ 82—2011,Technical Specification for High Strength Bolt Connections of Steel Structures[S].
[21]陈绍蕃.论高强度螺栓连接的分类和抗拉连接的计算[J].建筑钢结构进展,2014,16(3):1-6.
CHEN Shao-fan.On the Classification of High-strength Bolt Connections and the Calculation of Connections Subjected to Tension[J].Progress in Steel Building Structures,2014,16(3):1-6.
[22]KOETAKA Y,BYAKUNO Y,INOUE K.Experimental Verification of Design Criteria of Knee Brace Damper[C]//ISSS.Proceedings of the 4th International Symposium on Steel Structures.Seoul:ISSS,2006:125-136.
[23]CHOU C C,CHEN S Y.Subassemblage Tests and Finite Element Analyses of Sandwiched Buckling-restrained Braces[J].Engineering Structures,2010,32(8):2108-2121.
[24]唐 荣.新型全钢防屈曲耗能支撑的性能试验与设计方法研究[D].广州:广州大学,2012.
TANG Rong.Performance Testing and Designing Method Study of All-metallic Buckling-restrained Brace[D].Guangzhou:Guangzhou University,2012.

相似文献/References:

[1]王晓平,朱海涛,李忠献,等.天津滨海新区典型软土地基强夯法有限元分析[J].建筑科学与工程学报,2014,31(02):105.
 [J].Journal of Architecture and Civil Engineering,2014,31(02):105.
[2]屈文俊,马瑞嘉,崔 巍.预制板现浇混凝土叠合层加固砌体教学楼的抗震性能分析[J].建筑科学与工程学报,2013,30(03):7.
 QU Wen-jun,MA Rui-jia,CUI Wei.Analysis of Seismic Behavior of Masonry Teaching Buildings Strengthened by Cast-in-place RC Layer on Precast RC Slabs[J].Journal of Architecture and Civil Engineering,2013,30(02):7.
[3]薛刚,王崇阁.基于能量法的简支钢梁损伤识别试验及有限元分析[J].建筑科学与工程学报,2014,31(03):112.
 XUE Gang,WANG Chong-ge.Damage Identification Test and Finite Element Analysis of Simply Supported Steel Beam Based on Energy Dissipation Method[J].Journal of Architecture and Civil Engineering,2014,31(02):112.
[4]李 兵,张 齐,孟 爽.方钢管再生混凝土短柱轴压承载力有限元分析[J].建筑科学与工程学报,2014,31(04):29.
 LI Bing,ZHANG Qi,MENG Shuang.Finite Element Analysis of Bearing Capacity for Recycled Concrete-filled Square Steel Tubular Stub Columns Under Axial Compression[J].Journal of Architecture and Civil Engineering,2014,31(02):29.
[5]黄 华,刘伯权,张彬彬,等.钢筋混凝土抗震框架连续倒塌行为分析[J].建筑科学与工程学报,2014,31(04):35.
 HUANG Hua,LIU Bo-quan,ZHANG Bin-bin,et al.Analysis of Progressive Collapse Behavior of Earthquakeresistant Reinforced Concrete Frame[J].Journal of Architecture and Civil Engineering,2014,31(02):35.
[6]段 翔,韩 蕊,王斌华,等.山区公路曲线拱桥合理悬臂长度计算[J].建筑科学与工程学报,2013,30(03):107.
 DUAN Xiang,HAN Rui,WANG Bin-hua,et al.Calculation of Rational Cantilever Length on Mountain Highway Curve Arch Bridge[J].Journal of Architecture and Civil Engineering,2013,30(02):107.
[7]李 亮,李国强.钢-混凝土混合结构体系屈曲模态判别标准及临界荷载简化算法[J].建筑科学与工程学报,2014,31(04):67.
 LI Liang,LI Guo qiang.Judgment Standard of Buckling Mode and Simplified Algorithm of Critical Load for Steel-concrete Mixed Structure System[J].Journal of Architecture and Civil Engineering,2014,31(02):67.
[8]郭 猛,高未未,梁存之,等.大跨双向张弦结构不平衡支撑式滑移技术研究[J].建筑科学与工程学报,2015,32(01):51.
 GUO Meng,GAO Wei-wei,LIANG Cun-zhi,et al.Research on Unbalanced Support Sliding Technology of Long-span Bidirectional Beam String Structure[J].Journal of Architecture and Civil Engineering,2015,32(02):51.
[9]徐忠根,梁广贤,邓长根.定位轴线存在偏差的外传力钢框架节点传力板参数分析[J].建筑科学与工程学报,2015,32(02):42.
 XU Zhong-gen,LIANG Guang-xian,DENG Chang-gen.Parameter Analysis of Force-transforming Plates in Outside Steel Frame Joints with Location Axis Deviations[J].Journal of Architecture and Civil Engineering,2015,32(02):42.
[10]邓洪洲,庞金来,黎景辉.Q460输电钢管杆长圆形截面宽厚比限值研究[J].建筑科学与工程学报,2015,32(03):96.
 DENG Hong-zhou,PANG Jin-lai,LI Jing-hui.Research on Limit Value of Width to Thickness Ratio of Long Circular Section in Q460 Steel Transmission Pole[J].Journal of Architecture and Civil Engineering,2015,32(02):96.

备注/Memo

备注/Memo:
收稿日期:2018-08-11
基金项目:国家自然科学基金项目(51178276); 辽宁省重点研发计划指导计划项目(jytcy201801)
作者简介:李帼昌(1964-),女,辽宁昌图人,教授,博士研究生导师,工学博士,博士后,E-mail:liguochang0604@sina.com。
更新日期/Last Update: 2019-03-27