|本期目录/Table of Contents|

[1]谭冬梅,聂 顺,瞿伟廉,等.大跨斜拉桥北斗监测挠度温度效应分离研究[J].建筑科学与工程学报,2019,36(05):71-79.
 TAN Dong-mei,NIE Shun,QU Wei-lian,et al.Research on Deflection Temperature Effect Separation in Beidou Monitoring of Long-span Cable-stayed Bridge[J].Journal of Architecture and Civil Engineering,2019,36(05):71-79.
点击复制

大跨斜拉桥北斗监测挠度温度效应分离研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
36卷
期数:
2019年05期
页码:
71-79
栏目:
出版日期:
2019-09-23

文章信息/Info

Title:
Research on Deflection Temperature Effect Separation in Beidou Monitoring of Long-span Cable-stayed Bridge
文章编号:
1673-2049(2019)05-0071-09
作者:
谭冬梅1,聂 顺1,瞿伟廉1,刘晓飞1,吴 浩2
(1. 武汉理工大学 道路桥梁与结构工程湖北省重点实验室,湖北 武汉 430070; 2. 华中师范大学 城市与环境科学学院,湖北 武汉 430079)
Author(s):
TAN Dong-mei1, NIE Shun1, QU Wei-lian1, LIU Xiao-fei1, WU Hao2
(1. Hubei Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China; 2. College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, Hubei, China)
关键词:
波形延拓 小波分解 改进的集总平均经验模态分解 温度效应
Keywords:
waveform continuation wavelet decomposition MEEMD temperature effect
分类号:
TU317
DOI:
-
文献标志码:
A
摘要:
针对大跨斜拉桥北斗监测挠度温度效应分离问题,提出先利用挠度数据的周期特性,在挠度数据首尾分别进行波形延拓,在进行小波分解后所得小波细节中剔除高幅值车载作用挠度得到残余分量,将其与小波系数重构得到预降噪挠度,最后将预降噪挠度进行小波分解来实现挠度数据的高精度降噪; 得到降噪挠度后,利用改进的集总平均经验模态分解(MEEMD)良好的可抑制分解过程中产生模态混叠的特性,将降噪挠度进行MEEMD分解,接着将所得日温差和年温差效应第1个半周期通过对称置换得高精度日温差和年温差效应,最后将降噪挠度剔除高精度日温差和年温差效应后所得残余分量再次进行MEEMD分解,所得趋势部分即为长期挠度,从而实现日温差效应、年温差效应、长期挠度的逐步分离。结果表明:波形延拓+预降噪+小波分解的降噪算法比传统单一降噪算法精度更高; 温度效应分离算法能实现挠度温度效应各周期成分的精确分离,适合大跨斜拉桥北斗监测挠度温度效应分离。
Abstract:
Aiming at the separation of deflection temperature effect in Beidou monitoring of long-span cable-stayed bridges, the periodic characteristic of deflection data was used to carry out waveform continuation at the beginning and the end of deflection data respectively. The high-amplitude vehicle deflection was removed from the wavelet details after wavelet decomposition and the residual components were gotten. The pre-denoising deflection was obtained by reconstruction of the residual components and wavelet coefficients. The deflection date could be denoised precisely by wavelet decomposition of pre-denoising deflection. After denoising deflection, it could be decomposed by the modified ensemble empirical mode decomposition(MEEMD)because of the fine characteristic that suppressed the mode aliasing in the decomposition process. After MEEMD decomposition, the first half cycle of daily temperature difference and annual temperature difference effect was symmetrically replaced to obtain high precision daily temperature difference and annual temperature difference effect. Finally, the residual components of denoising deflection after eliminating high precision daily temperature difference and annual temperature difference effect were decomposed again by MEEMD. The trend part was long-term deflection, thus the gradual separation of the daily temperature difference effect, the annual temperature difference effect and the long-term deflection were realized. The results show that the denoising algorithms of waveform continuation + pre-denoising + wavelet decomposition is more accurate than the traditional single denoising algorithm. The temperature effect separation algorithm can achieve accurate separation of each periodic component of the deflection temperature effect and it is suitable for deflection temperature effect separation for Beidou monitoring of long-span cable-stayed bridge.

参考文献/References:

[1] SOHN H,WORDEN K,FARRAR C R.Statistical Damage Classification Under Changing Environmental and Operational Conditions[J].Journal of Intelligent Material Systems and Structures,2002,13(9):561-574.
[2]陈德伟,荆国强,黄 峥.用人工神经网络方法估计桥梁在温度作用下的挠度行为[J].结构工程师,2006,22(4):24-28.
CHEN De-wei,JING Guo-qiang,HUANG Zheng.Pre-
图12 跨中实测数据温度效应分解
Fig.12 Temperature Effect Decomposition of Measured Data in Midspan
图13 上下游跨中日温差效应对比
Fig.13 Comparison of Temperature Difference Effect
Between Upstream and Downstream Midspandiction of Bridge Structural Performance Under Temperature by Artificial Neural Network[J].Structural Engineers,2006,22(4):24-28.
[3]刘 纲,邵毅敏,黄宗明,等.长期监测中结构温度效应分离的一种新方法[J].工程力学,2010,27(3):55-61,100.
LIU Gang,SHAO Yi-min,HUANG Zong-ming,et al.A New Method to Separate Temperature Effect from Long-term Structural Health Monitoring Data[J].Engineering Mechanics,2010,27(3):55-61,100.
[4]陈夏春,陈德伟.多元线性回归在桥梁应变监测温度效应分析中的应用[J].结构工程师,2011,27(2):120-126.
CHEN Xia-chun,CHEN De-wei.Application of Multiple Linear Regression Model in Analysis of Temperature Effect on Strain Monitoring for Bridge Structures[J].Structural Engineers,2011,27(2):120-126.
[5]刘夏平,杨 红,孙 卓,等.基于LS-SVM的桥梁挠度监测中温度效应分离[J].铁道学报,2012,34(10):91-96.
LIU Xia-ping,YANG Hong,SUN Zhuo,et al.Study on Separation of Bridge Deflection Temperature Effect Based on LS-SVM[J].Journal of the China Railway Society,2012,34(10):91-96.
[6]杨 红,孙 卓,刘夏平,等.基于多最小二乘支持向量机的桥梁温度挠度效应的分离[J].振动与冲击,2014,33(1):71-76,88.
YANG Hong,SUN Zhuo,LIU Xia-ping,et al.Separation of Bridge Temperature Deflection Effect Based on M-LS-SVM[J].Journal of Vibration and Shock,2014,33(1):71-76,88.
[7]刘夏平,杨 红,孙 卓,等.基于奇异值分解的桥梁挠度分离研究[J].中山大学学报:自然科学版,2013,52(3):11-16.
LIU Xia-ping,YANG Hong,SUN Zhuo,et al.Separation Study of Bridge Deflection Based on Singular Value Decomposition[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2013,52(3):11-16.
[8]杨 坚,刘夏平,杨 红,等.桥梁结构变形中温度效应提取的一种新方法[J].广州大学学报:自然科学版,2013,12(3):38-44.
YANG Jian,LIU Xia-ping,YANG Hong,et al.A New Method to Extract Temperature Effect from Bridge Structure Deformation[J].Journal of Guangzhou University:Natural Science Edition,2013,12(3):38-44.
[9]杨 红,刘夏平,崔海霞,等.大跨径桥梁实时动态挠度信号的分离[J].振动、测试与诊断,2015,35(1):42-49,186.
YANG Hong,LIU Xia-ping,CUI Hai-xia,et al.Separation of Real-time Dynamic Deflection Signals for Long-span Bridges[J].Journal of Vibration, Measurement & Diagnosis,2015,35(1):42-49,186.
[10]陈国良,林训根,岳 青,等.基于时间序列分析的桥梁长期挠度分离与预测[J].同济大学学报:自然科学版,2016,44(6):962-968.
CHEN Guo-liang,LIN Xun-gen,YUE Qing,et al.Study on Separation and Forecast of Long-term Deflection Based on Time Series Analysis[J].Journal of Tongji University:Natural Science,2016,44(6):962-968.
[11]郑 旭,郝志勇,金 阳,等.基于MEEMD的内燃机辐射噪声贡献[J].浙江大学学报:工学版,2012,46(5):954-960.
ZHENG Xu,HAO Zhi-yong,JIN Yang,et al.Studying Noise Contributions of IC Engine via MEEMD Method[J].Journal of Zhejiang University:Engineering Science,2012,46(5):954-960.
[12]HUANG N E,SHEN Z,LONG S R.A New View of Nonlinear Water Waves:The Hilbert Spectrum[J].Annual Review of Fluid Mechanics,1999,31:417-457.
[13]FLANDRIN P,RILLING G,GONCALVES P.Empirical Mode Decomposition as a Filter Bank[J].IEEE Signal Processing Letters,2004,11(2):112-114.
[14]WU Z H,HUANG N E.Ensemble Empirical Mode Decomposition:A Noise-assisted Data Analysis Method[J].Advances in Adaptive Data Analysis,2009,1(1):-41.
[15]张乐文,王洪波,邱道宏,等.小波降噪与粒子群优化综合回归爆破震动参数[J].岩土力学,2014,35(增2):338-342.
ZHANG Le-wen,WANG Hong-bo,QIU Dao-hong,et al.Blasting Vibration Parameters Using Comprehensive Regression of Wavelet Denoising and Particle Swarm Optimization Algorithm[J].Rock and Soil Mechanics,2014,35(S2):338-342.
[16]马增强,柳晓云,张俊甲,等.VMD和ICA联合降噪方法在轴承故障诊断中的应用[J].振动与冲击,2017,36(13):201-207.
MA Zeng-qiang,LIU Xiao-yun,ZHANG Jun-jia,et al.Application of VMD-ICA Combined Method in Fault Diagnosis of Rolling Bearings[J].Journal of Vibration and Shock,2017,36(13):201-207.
[17]DRAGOMIRETSKIY K,ZOSSO D.Variational Mode Decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544.
[18]安 庆,李 岩.基于BDS的桥梁形变监测系统实现[J].测绘地理信息,2018,43(1):44-47.
AN Qing,LI Yan.Implementation of Deformation Monitoring System About Bridge Based on BDS[J].Journal of Geomatics,2018,43(1):44-47.
[19]徐爱功,韩晓东,崔希民,等.全球卫星导航定位系统原理与应用[M].徐州:中国矿业大学出版社,2008.
XU Ai-gong,HAN Xiao-dong,CUI Xi-min,et al.Principles and Applications of Global Navigation Satellite Systems[M].Xuzhou:China University of Mining and Technology Press,2008.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-11-11 基金项目:国家自然科学基金项目(51408452); 道路桥梁与结构工程湖北省重点实验室开放基金项目(DQJJ201709) 作者简介:谭冬梅(1976-),女,四川秀山人,副教授,工学博士,E-mail:smiledongmei@163.com。
更新日期/Last Update: 2019-09-29