|本期目录/Table of Contents|

[1]刘永健,陈 莎,王 壮.钢桥大气腐蚀微环境与长寿基因[J].建筑科学与工程学报,2023,40(05):1-19.[doi:10.19815/j.jace.2023.07068]
 LIU Yongjian,CHEN Sha,WANG Zhuang.Atmospheric corrosion micro-environment and longevity genes of steel bridges[J].Journal of Architecture and Civil Engineering,2023,40(05):1-19.[doi:10.19815/j.jace.2023.07068]
点击复制

钢桥大气腐蚀微环境与长寿基因(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年05期
页码:
1-19
栏目:
综述
出版日期:
2023-09-15

文章信息/Info

Title:
Atmospheric corrosion micro-environment and longevity genes of steel bridges
文章编号:
1673-2049(2023)05-0001-19
作者:
刘永健1,2,陈 莎1,王 壮1
(1. 长安大学 公路学院,陕西 西安 710064; 2. 长安大学 公路大型结构安全教育部工程研究中心,陕西 西安 710064)
Author(s):
LIU Yongjian1,2, CHEN Sha1, WANG Zhuang1
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Research Center of Highway Large Structure Engineering on Safety, Ministry of Education, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
桥梁工程 腐蚀 腐蚀环境 微环境 长寿基因 长寿命设计
Keywords:
bridge engineering corrosion corrosive environment micro-environment longevity gene long life design
分类号:
U448.36
DOI:
10.19815/j.jace.2023.07068
文献标志码:
A
摘要:
为探究钢桥不同构件腐蚀速率差异原因,通过文献综述、桥例分析和数值模拟等方法,研究了影响大气腐蚀速率的环境因素。利用构件表面温度、表面湿润时间及表面污染物沉积量表征钢桥微环境,明确了微环境是决定钢桥大气腐蚀速率的关键因素,灰尘、雨、露等通过影响钢桥微环境间接影响大气腐蚀速率; 对比了桥位环境和钢桥微环境的监测方法及监测结果,发现了桥位环境与构件微环境的差异、构件之间微环境的差异,厘清了桥位处建筑物与地形、污染源、结构特征、构件劣化对微环境的影响机制,明晰了微环境在钢桥全生命周期的演化特征,即微环境在设计中赋予、施工中造就、运营中恶化、养护中优化; 设计阶段确保构件可检、可达、可养,并采用疏通构造、阻隔构造、除湿装置,施工阶段减少板件制造的初始缺陷、避免构件之间的拼接误差,均可改善微环境,减缓腐蚀速率,延长构件的服役寿命,为结构注入长寿基因。
Abstract:
In order to explore the reasons for the different corrosion rates of different steel bridge components, the environmental factors affecting atmospheric corrosion rates were studied by literature review, bridge case analysis and numerical simulation. The micro-environment was characterized by temperature, wetting time and pollutant deposition of the components surface. It was clarified that micro-environment was the key factor determining the atmospheric corrosion rate, and dust, rain and dew indirectly affected the atmospheric corrosion rate by affecting the micro-environment. By comparing the monitoring methods and results of the bridge site environment and the steel bridge micro-environment, the differences between the bridge site environment and the component micro-environment, and the differences between the components micro-environment were found. The influence mechanism of buildings and topography, pollution sources, structural characteristics and deteriorated components on the micro-environment was clarified. The evolution characteristics of micro-environment in the whole service life of steel bridges were clarified, that was, micro-environment was given in design, created during construction, deteriorated in service, and optimized in maintenance. Ensuring that the components are inspectable, reachable, maintainable, and adopting the dredge structure, barrier structure, dehumidification device in the design stage, as well as reducing the initial defects of plate manufacturing and avoiding the splicing error between components in the construction stage, can improve the micro-environment, slow down the corrosion rate, extend the service life of components, and inject longevity genes into the structure.

参考文献/References:

[1] 贾 晨,邵永松,郭兰慧,等.建筑结构用钢的大气腐蚀模型研究综述[J].哈尔滨工业大学学报,2020,52(8):1-9.
JIA Chen,SHAO Yongsong,GUO Lanhui,et al.A review of atmospheric corrosion models of building structural steel[J].Journal of Harbin Institute of Technology,2020,52(8):1-9.
[2]王春生,张静雯,段 兰,等.长寿命高性能耐候钢桥研究进展与工程应用[J].交通运输工程学报,2020,20(1):1-26.
WANG Chunsheng,ZHANG Jingwen,DUAN Lan,et al.Research progress and engineering application of long lasting high performance weathering steel bridges[J].Journal of Traffic and Transportation Engineering,2020,20(1):1-26.
[3]朱劲松,郭晓宇,亢景付,等.耐候桥梁钢腐蚀力学行为研究及其应用进展[J].中国公路学报,2019,32(5):1-16.
ZHU Jinsong,GUO Xiaoyu,KANG Jingfu,et al.Research on corrosion behavior,mechanical property,and application of weathering steel in bridges[J].China Journal of Highway and Transport,2019,32(5):1-16.
[4]KULICKI J M,PRUCZ Z,SORGENFRE D F,et al.Guidelines for evaluating corrosion effects in existing steel bridges[M].Washington DC:Transportation Research Board,1990.
[5]SCHWEITZER P A.Fundamentals of corrosion:mechanisms,causes,and preventative methods[M].Boca Raton:CRC Press,2010.
[6]LICHTENSTEIN A G.The silver bridge collapse recounted[J].Journal of Performance of Constructed Facilities,1993,7(4):249-261.
[7]National Transportation Safety Board.Collapse of a suspended span of interstate route 95 highway bridge over the Mianus river(Greenwich,CT)[R].Washington DC:NTTS,1984.
[8]下里哲弘,村越潤,玉城喜章.腐食劣化により崩落に至った鋼橋の変状モニタリング[J].土木技術資料,2011,53(2):14-17.
SHIMOZATO T,MURAKOSHI J,TAMAKI Y.Monitoring of deformation of steel bridges that collapsed due to corrosion deterioration[J].Technical Civil Engineering Data,2011,53(2):14-17.
[9]杉浦邦征.2021年10月に発生した六十谷水管橋崩落調査報告書[R].大阪:日本土木工学会関西支社,2021.
SUGIURA B.A Report on the collapse of the Roppongi river bridge in October 2021[R].Osaka:Kansai Branch of JSCE,2021.
[10]DHINAKARAN P R M.Corrosion effect for steel bridges stiffness,stability and safe factor[D].Kaunas:Kaunas University of Technology,2018.
[11]AHN J H,KIM I T,KAINUMA S,et al.Residual shear strength of steel plate girder due to web local corrosion[J].Journal of Constructional Steel Research,2013,89:198-212.
[12]ASAO N,FUJII K.Remaining strength evaluations of steel girders with corrosion near supports and their reinforcements[J].KSCE Journal of Civil Engineering,2018,22(10):4047-4055.
[13]JIN Y H,HA M G,JEON S H,et al.Evaluation of corrosion conditions for the steel box members by corrosion monitoring exposure test[J].Construction and Building Materials,2020,258:120195.
[14]ZHI Y J,FU D M,ZHANG D W,et al.Prediction and knowledge mining of outdoor atmospheric corrosion rates of low alloy steels based on the random forests approach[J].Metals,2019,9(3):383.
[15]Corrosion of metals and alloys — corrosivity of atmospheres — classification,determination and estimation:ISO 9223:2012[S].Geneva:International Organization for Standardization,2012.
[16]HAO W K,XU L L,CHEN X,et al.Classification and spatial mapping of atmospheric corrosion of China[J].NPJ Materials Degradation,2022,6(1):23-31
[17]KIM Y S,LIM H K,KIM J J,et al.Corrosivity of atmospheres in the Korean peninsula[J].Corrosion Science and Technology,2011,10(4):109-117.
[18]広瀬望.GISを用いた現地計測と領域気候モデルの 飛来塩分量予測の統合化による耐候性鋼橋梁 の腐食環境評価マップの作成[R].松江:松江工業高等専門学校,2009.
HIROSE N.Development of corrosive environment evaluation map of weathering steel bridges by integrating field measurement using GIS and prediction of incoming salinity of regional climate models[R].Matsue:Matsue College of Technology,2009.
[19]焦让杰.关于范特霍夫规则的讨论[J].北京林业大学学报,1987,9(4):413-416.
JIAO Rangjie.Discussion on the Van Tehoff Rule[J].Journal of Beijing Forestry University,1987,9(4):413-416.
[20]张映明.与范特霍夫规则相关的两个问题[J].化学教学,2014(4):74-77.
ZHANG Yingming.Two problems related to the Van Tehoff Rule[J].Education in Chemistry,2014(4):74-77.
[21]GOFF J A.Saturation pressure of water on the new kelvin scale[J].American Society of Heating and Ventilating Engineers,1957(63):347-354.
[22]黄永昌,张建旗.现代材料腐蚀与防护[M].上海:上海交通大学出版社,2012.
HUANG Yongchang,ZHANG Jianqi.Modern materials corrosion and protection[M].Shanghai:Shanghai Jiao Tong University Press,2012.
[23]篠原正.大気腐食評価手法に関する最近の進歩[J].表面科学,2015,36(1):4-11.
TADASHI S.Evaluation methods for atmospheric corrosion[J].Surface Science,2015,36(1):4-11.
[24]刘永健,刘 江,张 宁.桥梁结构日照温度作用研究综述[J].土木工程学报,2019,52(5):59-78.
LIU Yongjian,LIU Jiang,ZHANG Ning.Review on solar thermal actions of bridge structures[J].China Civil Engineering Journal,2019,52(5):59-78.
[25]刘永健,刘 江.钢-混凝土组合梁桥温度作用与效应综述[J].交通运输工程学报,2020,20(1):42-59.
LIU Yongjian,LIU Jiang.Review on temperature action and effect of steel-concrete composite girder bridge[J].Journal of Traffic and Transportation Engineering,2020,20(1):42-59.
[26]王 壮,刘永健,唐志伟,等.基于日照阴影识别的桁式拱肋三维温度场模拟方法[J].中国公路学报,2022,35(12):91-105.
WANG Zhuang,LIU Yongjian,TANG Zhiwei,et al.Three-dimensional temperature field simulation method of truss arch rib based on sunshine shadow recognition[J].China Journal of Highway and Transport,2022,35(12):91-105.
[27]ZHANG C Y,LIU Y J,LIU J,et al.Validation of long-term temperature simulations in a steel-concrete composite girder[J].Structures,2020,27:1962-1976.
[28]LUCAS J M,VIRLOGEUX M,LOUIS C.Temperature in the box girder of the normandy bridge[J].Structural Engineering International,2005,15(3):156-165.
[29]刘 扬,张海萍,邓 扬,等.基于实测数据的悬索桥钢箱梁温度场特性研究[J].中国公路学报,2017,30(3):56-64.
LIU Yang,ZHANG Haiping,DENG Yang,et al.Temperature field characteristic research of steel box girder for suspension bridge based on measured data[J].China Journal of Highway and Transport,2017,30(3):56-64.
[30]王 达,张永健,刘 扬,等.基于健康监测的钢桁加劲梁钢-混组合桥面系竖向温度梯度效应分析[J].中国公路学报,2015,28(11):29-36.
WANG Da,ZHANG Yongjian,LIU Yang,et al.Vertical temperature gradient effect analysis of steel-concrete composite deck system on steel truss stiffening girder with health monitoring[J].China Journal of Highway and Transport,2015,28(11):29-36.
[31]章熙民,任泽霈,梅飞鸣,等.传热学[M].5版.北京:中国建筑工业出版社,2007.
ZHANG Ximin,REN Zepei,MEI Feiming,et al.Heat transfer theory[M].5th ed.Beijing:China Architecture & Building Press,2007.
[32]廖金孫,松井繁憲,串田守可,等.鋼製箱桁内部の環境腐食性および除湿剤による防錆に関する研究[J].土木学会論文集,2003(749):137-148.
LIAO J S,MATSUI S,KUSHIDA M,et al.Prevention of corrosion inside steel box girder of bridge[J].Doboku Gakkai Ronbunshu,2003(749):137-148.
[33]永田和寿,内藤涼介,八木千里,等.気象データを用いた鋼桁の結露評価に関する基礎的研究[J].構造工学論文集,2016(62):796-803.
KAZUTOSHI N,RYOSUKE N,CHISATO Y,et al.Evaluation methods of dew condensation of steel girders using weather data[J].Journal of Structural Engineering,2016(62):796-803.
[34]押川渡,篠原正,元田慎一.強電解質が吸水してできる水膜組成と水膜厚さの推定[J].Zairyo-to-Kankyo,2003(52):293-298.
WATARU O,TADASHI S,SHINICHI M.Estimation of water film composition and water film thickness formed by strong electrolyte absorption[J].Zairyo-to-Kankyo,2003(52):293-298.
[35]堀康彦,谷純一,足立和郎,等.送電用鉄塔の腐食等に対する健全性評価技術に関する研究[R].東京:電力中央研究所,2019.
YASUHIKO H,JUNICHI T,KAZUO A,et al.Research on soundness evaluation technology against corrosion of power transmission towers[R].Tokyo:Central Research Institute of Electric Power Industry,2019.
[36]石川智巳,服部康男,須藤仁,等.送電用鉄塔の腐食等に対する健全性評価技術に関する研究[R].東京:電力中央研究所,2016.
TOMOMI I,YASUO H,HITOSHI S,et al.Research on soundness evaluation technology against corrosion of power transmission towers[R].Tokyo:Central Research Institute of Electric Power Industry,2016.
[37]山田仁,永田和寿.橋梁の周辺環境を考慮した結露の発生状況に関する考察[C]//日本土木学会.土木学会第66回年次学術講演会.東京:日本土木学会,2011:1177-1178.
YAMADA H,NAGATA K.A study on the occurrence of condensation considering the surrounding environment of a bridge[C]// Japan Society of Civil Engineers.66th Annual Academic Lecture of Japan Society of Civil Engineers.Tokyo:Japan Society of Civil Engineers,2011:1177-1178.
[38]大岛雅人,田高淳,铃村惠太,等.钢箱桁桥梁の経済性を考虑した桁内除湿设计と実证试験[J].土木学会论文集F,2007,63(1):119-130.
OHSHIMA M,TAKOH J,SUZUMURA K,et al.Economical dehumidification design and actual proof examination of box girder bridge[J].Doboku Gakkai Ronbunshuu F,2007,63(1):119-130.
[39]伊藤義浩.鋼製設備の部位レベルにおける総合的腐食環境と経時腐食挙動の評価技術に関する研究[D].福岡:九州大学,2013.
ITO Y.Study on evaluation method of integrated corrosion environment and corrosion rate for the element of steel structure[D].Fukuoka:Kyushu University,2013.
[40]本荘清司,藤原規雄.鋼トラス橋の漏水等による劣化事例[C]//日本土木学会.土木学会第69回年次学術講演会.東京:日本土木学会,2014:1141-1142.
HONJO S,FUJIWARA N.Deterioration cases caused by steel bridge leakage[C]//Japan Society of Civil Engineers.69th Annual Academic Lecture of Japan Society of Civil Engineers.Tokyo:Japan Society of Civil Engineers,2014:1141-1142.
[41]JIN Y H,HA M G,JEONG Y S,et al.Relative corrosion environment conditions of steel box members examined by corrosion current measurement[J].Journal of the Korea Institute for Structural Maintenance and Inspection,2020,24(6):171-179.
[42]HA M G,HEO C J,AHN J H.Correlation evaluation of time of wetness and mean corrosion depth depending on corrosive environment[J].Journal of Korean Society of Steel Construction,2022,34(3):119-127.
[43]HA M Y,JEON S H,JEONG Y S,et al.Corrosion environment monitoring of local structural members of a steel truss bridge under a marine environment[J].International Journal of Steel Structures,2021,21(1):167-177.
[44]玉越隆史,星野誠,市川明広,等.耐候性鋼橋の適用環境評価手法の高度化に関する研究(Ⅰ)[R].東京:国土技術政策総合研究所,2014.
YUETSU T,MAKOTO H,AKIHIRO I,et al.Research on evaluation technique of applicable condition for weathering steel bridge(Ⅰ)[R].Tokyo:National Institute of Land and Infrastructure Policy,2014.
[45]下里哲弘,有住康則,押川渡,等.鋼橋の腐食劣化メカニズムの解明と耐久性診断に関する研究[R].沖縄:琉球大学,2012.
TETSUHIRO S,YASUNORI A,KAWAWATARI O,et al.Elucidation of corrosion deterioration mechanism and durability diagnosis[R].Okinawa:University of the Ryukyus,2012.
[46]麻生稔彦,松尾宏樹,西村陽平.多径間多主桁鋼鈑桁橋における塩分環境調査[J].山口大学工学部研究報告,2011,62:27-32.
TOSHIHIKO A,HIROKI M,YOHEI N.An investigation of saline environment on a multi-span multi-girder plate girder bridge[J].Research Report of the Faculty of Engineering,Yamaguchi University,2011,62:27-32.
[47]宮本重信,北嶋浩.重腐食部の重防食による鋼橋ライフサイクルコストの縮減[R].福井県:雪対策·建設技術研究所,2008,8:61-65.
SHIGENOBU M,HIROSHI K.Reduction of life cycle cost of steel bridge using heavy anti-corrosion on remarkable corrosion area[R].Fukui Prefectural:Snow Countermeasures,Construction Technology Research Institute,2008,8:61-65.
[48]Federal Highway Administration.Uncoated weathering steel in structures[R].Washington DC:Federal Highway Administration,1989.
[49]ASHTON M,BAAS P.Spray and wind buffeting from heavy vehicles:a literature review[R].Wellington:Road Safety Trust Land Transport Safety Authority,1998.
[50]CLARKE R M.Heavy truck splash and spray suppression:near and long term solutions[C]//SAE International.Technical Paper Series.Warrendale:SAE International,1983:110-121.
[51]KUBZOVA M,KRIVY V,KREISLOVA K,et al.Amount of chlorides in corrosion products of weathering steel[J].Transportation Research Procedia,2019,40:751-758.
[52]KRIVY V,KUBZOVA M,KONECNY P,et al.Corrosion processes on weathering steel bridges influenced by deposition of de-icing salts[J].Materials,2019,12(7):1089.
[53]KRIVY V,URBAN V,KREISLOVA K.Development and failures of corrosion layers on typical surfaces of weathering steel bridges[J].Engineering Failure Analysis,2016,69:147-160.
[54]KUBZOVA M,KRIVY V,KREISLOVA K.Influence of chloride deposition on corrosion products[J].Procedia Engineering,2017,192:504-509.
[55]KUBZOVA M,KRIVY V,KREISLOVA K.Influence of microclimate on the sustainability and reliability of weathering steel bridge[J].IOP Conference Series:Earth and Environmental Science,2018,143:012008.
[56]KRIVY V,URBAN V,KUBZOVA M.Thickness of corrosion layers on typical surfaces of weathering steel bridges[J].Procedia Engineering,2016,142:56-62.
[57]HOSEINPOOR M,PROSEK T,BABUSIAUX L,et al.Toward more realistic time of wetness measurement by means of surface relative humidity[J].Corrosion Science,2020,177:108999.
[58]潘守文.现代气候学原理[M].北京:气象出版社,1994.
PAN Shouwen.Principles of modern climatology[M].Beijing:China Meteorological Press,1994.
[59]STEWART I D,OKE T R.Local climate zones for urban temperature studies[J].Bulletin of the American Meteorological Society,2012,93(12),1879-1900.
[60]ELLIS C J,EATON S.Microclimates hold the key to spatial forest planning under climate change:cyanolichens in temperate rainforest[J].Global Change Biology,2021,27(9):1915-1926.
[61]HOPPER T,LANGLOIS A M,MURPHY T.Service life design reference guide[R].Washington DC:Federal Highway Administration,2022.
[62]USTIN O.Steel bridge design handbook[R].Chicago:National Steel Bridge Alliance,2022.
[63]ROBERT K.Steel bridge design handbook:corrosion protection of steel bridges[R].Washington DC:Federal Highway Administration,2015.
[64]MCDAD B,LAFFREY D C,DAMMANN M,et al.Performance of weathering steel in TxDOT bridges[R].Texas:Department of Transportation,2000.
[65]AULT J P,DOLPH J D.Corrosion prevention for extending the service life of steel bridges[M].Washington DC:The National Academies Press,2018.
[66]岩本達志,今井学,吉田利樹,等.鋼構造物ボルト部の防せい対策[C]//日本土木学会.土木学会第67回年次学術講演会.東京:日本土木学会,2013:319-320.
TATSUSHI I,GAKU I,TOSHIKI Y,et al.Protective measures for steel bridge bolts[C]// Japan Society of Civil Engineers.67th Annual Academic Lecture of Japan Society of Civil Engineers.Tokyo:Japan Society of Civil Engineers,2013,319-320.
[67]久保圭吾,亀子学,山下修平,等.FRP防護板を用いた鋼桁間の腐食環境改善に関する研究[C]//日本土木学会.土木学会第67回年次学術講演会.東京:日本土木学会,2012:329-330.
KUBO K,KAMEKO M,YAMASHITA S,et al.Research on optimizing the corrosion environment between steel girders using FRP protective plates[C]//Japan Society of Civil Engineers.67th Annual Academic Lecture of Japan Society of Civil Engineers.Tokyo:Japan Society of Civil Engineers,2012,329-330.
[68]矢吹哲哉,有住康則,下里哲弘,等.沖縄地区鋼橋防食マニュアル[R].沖縄:琉球大学,2018.
YABUKI T,ARIZUMI Y,SHIMOSATO T,et al.Anti-corrosion manual for steel bridges in Okinawa area[R].Okinawa:University of the Ryukyus,2018.
[69]庄野好希,内田裕也,田中正明.調湿剤を用いた鋼箱桁内面塗装の簡素化[J].建設施工の環境対策,2009(712):64-68.
SHOUNO Y,TANAKA M,UEDA Y.Simplification of inner coating of steel box girder using humidity control agent[J].Environmental Measures for Construction,2009(712):64-68.
[70]庄野好希,浦剛史,槌谷直,等.「箱桁内面防錆システム」の実橋への適用-唐戸川新橋橋梁建設工事での取組み[J].クリモト技報,2009(58),45-51.
SHOUNO Y,URA T,TSUCHITANI T,et al.Application of “rust prevention system inside box girder” to a real bridge:approach to construction of “Karatogawashinhashi”[J].Kurimoto Technical Report,2009(58),45-51.
[71]朱 超,卢靖宇,代希华,等.大尺寸钢箱梁温湿度场分析[J].桥梁建设,2021,51(4):81-87.
ZHU Chao,LU Jingyu,DAI Xihua,et al.Analysis of temperature and humidity field of large-size steel box girder[J].Bridge Construction,2021,51(4):81-87.

相似文献/References:

[1]刘荣桂,刘德鑫,延永东,等.CFRP筋复合型锚具锚固性能研究[J].建筑科学与工程学报,2013,30(02):9.
 LIU Rong-gui,LIU De-xin,YAN Yong-dong.[J].Journal of Architecture and Civil Engineering,2013,30(05):9.
[2].《建筑科学与工程学报》征稿简则[J].建筑科学与工程学报,2013,30(02):127.
[3]李加武,黄森华,王新.开口断面斜拉桥主梁动力特性的有限元简化计算[J].建筑科学与工程学报,2013,30(04):59.
 LI Jia-wu,HUANG Sen-hua,WANG Xin.Finite Element Simplified Computation for Dynamic Characteristics of Cable-stayed Bridge Girder with Opening Section[J].Journal of Architecture and Civil Engineering,2013,30(05):59.
[4]任 伟,盖轶婷,王 锦.混凝土自锚式悬索桥过程控制状态分析[J].建筑科学与工程学报,2014,31(03):45.
 REN Wei,GAI Yi-ting,WANG Jin.Analysis of Process Control State About Concrete Selfanchored Suspension Bridge[J].Journal of Architecture and Civil Engineering,2014,31(05):45.
[5]李加武,周 琴,黄森华.简支梁桥铅芯橡胶支座减震特性研究[J].建筑科学与工程学报,2014,31(03):124.
 LIU Xin-hua,LI Jia-wu,ZHOU Qin,et al.Research on Seismic Isolation Characteristics of LRB for Simply Supported Beam Bridge[J].Journal of Architecture and Civil Engineering,2014,31(05):124.
[6]韦建刚,黄 蕾,李佩元,等.旧空心板简支梁桥的连续化改造加固研究[J].建筑科学与工程学报,2014,31(04):103.
 WEI Jian-gang,HUANG Lei,LI Pei-yuan,et al.Research on Continuous Transformation and Reinforcement for Old Simply Supported Hollow Slab Bridge[J].Journal of Architecture and Civil Engineering,2014,31(05):103.
[7]周 帅,曾永平,杨国静,等.桥梁箱型吊杆涡振与驰振耦合振动的数值模拟[J].建筑科学与工程学报,2015,32(02):84.
 ZHOU Shuai,ZENG Yong-ping,YANG Guo-jing,et al.Numerical Simulation on Coupled Vibration of Vortex-induced Vibration and Galloping Vibration for Box Hangers of Bridges[J].Journal of Architecture and Civil Engineering,2015,32(05):84.
[8]赵士良,韩万水,鲁永飞,等.重载交通条件下装配式RC板桥抗裂性分析[J].建筑科学与工程学报,2015,32(04):73.
 ZHAO Shi-liang,HAN Wan-shui,LU Yong-fei,et al.Crack Resistance Analysis on Prefabricated RC Slab Bridge Under Heavy Traffic[J].Journal of Architecture and Civil Engineering,2015,32(05):73.
[9]贡金鑫,江力财,赵尚传,等.桥梁拉吊索用不锈钢钢丝腐蚀性能及斜拉索时变可靠度研究[J].建筑科学与工程学报,2015,32(05):8.
 GONG Jin-xin,JIANG Li-cai,ZHAO Shang-chuan,et al.Study on Corrosion Properties of Stainless Steel Wire for Cable Use and Time-variant Reliability of Stay Cable of Bridge[J].Journal of Architecture and Civil Engineering,2015,32(05):8.
[10]李立峰,刘守苗,吴文朋.氯离子侵蚀效应对RC桥墩抗震性能的影响[J].建筑科学与工程学报,2015,32(05):56.
 LI Li-feng,LIU Shou-miao,WU Wen-peng.Influence of Chloride Ion Corrosion on Seismic Performance of Reinforced Concrete Piers[J].Journal of Architecture and Civil Engineering,2015,32(05):56.
[11]陈 莎,刘永健,王 壮,等.钢桥表面相对湿度的边界条件计算方法[J].建筑科学与工程学报,2024,41(02):85.[doi:10.19815/j.jace.2024.03010]
 CHEN Sha,LIU Yongjian,WANG Zhuang,et al.Calculation methods for boundary conditions of relative humidity on steel bridge surface[J].Journal of Architecture and Civil Engineering,2024,41(05):85.[doi:10.19815/j.jace.2024.03010]

备注/Memo

备注/Memo:
收稿日期:2023-07-21
基金项目:国家自然科学基金项目(51978061); 重庆城投集团科研项目(CQCT-JS-SC-GC-2022-0080)
作者简介:刘永健(1966-),男,工学博士,教授,博士生导师,E-mail:liuyongjian@chd.edu.cn。
更新日期/Last Update: 2023-09-01