|本期目录/Table of Contents|

[1]杨青天,多 飞,张晋川,等.火灾下双钢管混凝土复合短柱的性能与承载力计算方法[J].建筑科学与工程学报,2024,41(01):128-137.[doi:10.19815/j.jace.2022.03101]
 YANG Qingtian,DUO Fei,ZHANG Jinchuan,et al.Performance and bearing capacity calculation method of concrete-filled double steel tubular composite stub columns under fire[J].Journal of Architecture and Civil Engineering,2024,41(01):128-137.[doi:10.19815/j.jace.2022.03101]
点击复制

火灾下双钢管混凝土复合短柱的性能与承载力计算方法(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
41卷
期数:
2024年01期
页码:
128-137
栏目:
建筑结构
出版日期:
2024-01-20

文章信息/Info

Title:
Performance and bearing capacity calculation method of concrete-filled double steel tubular composite stub columns under fire
文章编号:
1673-2049(2024)01-0128-10
作者:
杨青天1,多 飞1,张晋川1,侯立群2,陈适才1
(1. 北京工业大学 土木工程系,北京 100124; 2. 中铁建设集团有限公司,北京 100040)
Author(s):
YANG Qingtian1, DUO Fei1, ZHANG Jinchuan1, HOU Liqun2, CHEN Shicai1
(1. Department of Civil Engineering, Beijing University of Technology, Beijing 100124, China; 2. China Railway Construction Group Co., Ltd., Beijing 100040, China)
关键词:
双钢管混凝土复合短柱 温度场 耐火极限 简化计算公式 承载力
Keywords:
concrete-filled double steel tubular composite stub column temperature field fire resistance limit simplified calculation formula bearing capacity
分类号:
TU398.9
DOI:
10.19815/j.jace.2022.03101
文献标志码:
A
摘要:
为研究双钢管混凝土复合短柱的耐火性能,建立了双钢管混凝土复合短柱精细化数值模型,在类似构件试验成果验证的基础上,开展其高温反应规律和耐火性能影响因素研究; 全面分析了内管径厚比、外管径厚比、内外管直径比等参数的影响,以及不同截面组合形式(内圆外圆、内方外圆和内圆外方)双钢管混凝土短柱的耐火极限。基于热传导分析理论推导双钢管混凝土短柱截面的温度场分布公式,并根据有限元模拟结果对公式进行修正; 最后基于温度等效原理进一步提出了火灾条件下双钢管混凝土短柱截面温度场的简化计算公式和承载力计算方法。结果表明:双钢管混凝土复合短柱具有较好的耐火性能,在直径不变时增大内钢管的厚度以及在厚度不变时增加内钢管的直径都有利于耐火极限的提高; 在荷载作用和含钢率相同的条件下,不同截面组合形式的双钢管混凝土短柱耐火极限相差不大,但总体上双圆钢管混凝土短柱的耐火性能偏优; 提出的温度场简化计算公式和基于等效温度的承载力计算方法与有限元结果相对误差都在15%以内。
Abstract:
In order to study the fire resistance of concrete-filled double steel tubular composite stub columns(CFDST), a refined numerical model of CFDST was established. Based on the verification of test results of similar components, the high-temperature response law and fire resistance influence factor of CFDST were analyzed. The effects of internal pipe diameter thickness ratio, external pipe diameter thickness ratio, internal and external pipe diameter ratio were comprehensively analyzed. The fire resistance limits of CFDST with different section combinations(inner circle and outer circle, inner square and outer circle, inner circle and outer square)were compared and analyzed. Based on the theory of heat conduction analysis, the temperature field distribution formula of CFDST section was deduced, and the formula was modified according to the results of finite element simulation. Finally, based on the principle of temperature equivalence, the simplified calculation formula and bearing capacity calculation method of section temperature field of CFDST under fire were further proposed. The results show that CFDST has good fire resistance. Increasing the thickness of the inner steel tube when the diameter is unchanged and increasing the diameter of the inner steel tube when the thickness is unchanged are conducive to the improvement of the fire resistance limit. Under the condition of the same load and steel content, the fire resistance limit of CFDST with different section combinations is almost the same, but on the whole, the fire resistance of double circular steel tube concrete stub column is better. The difference between the simplified calculation formula of temperature field, the bearing capacity calculation method and the finite element results is less than 15%.

参考文献/References:

[1] ROMERO M L,ESPINOS A,PORTOLES J M,et al.Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire[J].Engineering Structures,2015,99:536-545.
[2]WAN C Y,ZHA X X,DASSEKPO J B M.Analysis of axially loaded concrete filled circular hollow double steel tubular columns exposed to fire[J].Fire Safety Journal,2017,88:1-12.
[3]CAMARGO A L,RODRIGUES J P C,FAKURY R H,et al.Fire resistance of axially and rotationally restrained concrete-filled double-skin and double-tube hollow steel columns[J].Journal of Structural Engineering,2019,145(11):04019128.
[4]XIONG M X,XIONG D X,RICHARD LIEW J Y.Behaviour of steel tubular members infilled with ultra high strength concrete[J].Journal of Constructional Steel Research,2017,138:168-183.
[5]EKMEKYAPAR T,AL-ELIWI B J M.Concrete filled double circular steel tube(CFDCST)stub columns[J].Engineering Structures,2017,135:68-80.
[6]钱稼茹,张 扬,纪晓东,等.复合钢管高强混凝土短柱轴心受压性能试验与分析[J].建筑结构学报,2011,32(12):162-169.
QIAN Jiaru,ZHANG Yang,JI Xiaodong,et al.Test and analysis of axial compressive behavior of short composite-sectioned high strength concrete filled steel tubular columns[J].Journal of Building Structures,2011,32(12):162-169.
[7]XIONG M X,XIONG D X,RICHARD LIEW J Y.Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials[J].Engineering Structures,2017,136:494-510.
[8]RICHARD LIEW J Y,XIONG D X.Ultra-high strength concrete filled composite columns for multi-storey building construction[J].Advances in Structural Engineering,2012,15(9):1487-1503.
[9]AHMED M,LIANG Q Q,PATEL V I,et al.Numerical analysis of axially loaded circular high strength concrete-filled double steel tubular short columns[J].Thin-walled Structures,2019,138:105-116.
[10]AHMED M,LIANG Q,PATEL V,et al.Behavior of eccentrically loaded double circular steel tubular short columns filled with concrete[J].Engineering Structures,2019,201:109790.
[11]CI J C,JIA H,CHEN S C,et al.Performance analysis and bearing capacity calculation on circular concrete-filled double steel tubular stub columns under axial compression[J].Structures,2020,25:554-565.
[12]ESPINOS A,ROMERO M L,LAM D.Fire performance of innovative steel-concrete composite columns using high strength steels[J].Thin-walled Structures,2016,106:113-128.
[13]LU H,ZHAO X L,HAN L H.FE modelling and fire resistance design of concrete filled double skin tubular columns[J].Journal of Constructional Steel Research,2011,67(11):1733-1748.
[14]韩林海.钢管混凝土结构:理论与实践[M].3版.北京:科学出版社,2016.
HAN Linhai.Concrete filled steel tubular structures:theory and practice[M].3rd ed.Beijing:Science Press,2016.
[15]LU H,ZHAO X L,HAN L H.Testing of self-consolidating concrete-filled double skin tubular stub columns exposed to fire[J].Journal of Constructional Steel Research,2010,66(8/9):1069-1080.
[16]CI J C,CHEN S C,JIA H,et al.Axial compression performance analysis and bearing capacity calculation on square concrete-filled double-tube short columns[J].Marine Structures,2020,72:102775.
[17]CI J C,JIA H,AHMED M,et al.Experimental and numerical analysis of circular concrete-filled double steel tubular stub columns with inner square hollow section[J].Engineering Structures,2021,227:111400.
[18]周绪红,张瑞芝,王卫永,等.火作用下钢管约束钢筋混凝土柱温度场分析[J].钢结构,2017,32(1):105-110,116.
ZHOU Xuhong,ZHANG Ruizhi,WANG Weiyong,et al.Temperature distribution analysis of steel tube confined RC columns in fire[J].Steel Construction,2017,32(1):105-110,116.

相似文献/References:

[1]俞明德,沈锐利,唐茂林,等.西堠门大桥主缆横断面温度场研究[J].建筑科学与工程学报,2010,27(03):53.
 YU Ming-de,SHEN Rui-li,TANG Mao-lin,et al.Research on Temperature Field of Main Cable Section of Xihoumen Bridge[J].Journal of Architecture and Civil Engineering,2010,27(01):53.
[2]陈扬,刘钊.节段预制箱梁后浇横隔墙的水化热效应分析[J].建筑科学与工程学报,2012,29(01):110.
 CHEN Yang,LIU Zhao.Analysis of Hydration Heat Effect Due to Post-casting Diaphragm in Segmental Precast Box-girder[J].Journal of Architecture and Civil Engineering,2012,29(01):110.
[3]余志武,唐国庆,丁发兴,等.三面受火钢筋混凝土梁温度场非线性分析[J].建筑科学与工程学报,2005,22(04):11.
 YU Zhi-wu,TANG Guo-qing,DING Fa-xing.Nonlinear analysis of temperature field of reinforced concrete beam with three surfaces exposing to fire[J].Journal of Architecture and Civil Engineering,2005,22(01):11.
[4]刘艳芝,邓集钱,谭清华.内嵌十字型钢的方形劲性不锈钢管混凝土柱 耐火性能[J].建筑科学与工程学报,2019,36(03):66.
 LIU Yan-zhi,DENG Ji-qian,TAN Qing-hua.Fire Resistance of Square Steel Reinforced Concrete-filled Stainless Steel Tube Columns Embedded with Cross-section Steel[J].Journal of Architecture and Civil Engineering,2019,36(01):66.
[5]王 莹,王 盼.油罐车火灾下大跨径双层钢桁梁悬索桥高温 力学性能[J].建筑科学与工程学报,2019,36(03):91.
 WANG Ying,WANG Pan.High Temperature Mechanical Properties of Long-span Double-deck Steel Truss Beam Suspension Bridge Under Tanker Fire[J].Journal of Architecture and Civil Engineering,2019,36(01):91.
[6]吴永哲,朱泽萱,杨 平,等.60 m级超长联络通道冻结法施工与实测分析[J].建筑科学与工程学报,2023,40(06):148.[doi:10.19815/j.jace.2021.11039]
 WU Yongzhe,ZHU Zexuan,YANG Ping,et al.Construction and measurement analysis of freezing method for 60 m level super long connecting passage[J].Journal of Architecture and Civil Engineering,2023,40(01):148.[doi:10.19815/j.jace.2021.11039]
[7]巴光忠,郑欣欣,刘才玮,等.火灾后锈蚀混凝土梁抗弯性能试验研究[J].建筑科学与工程学报,2024,41(01):138.[doi:10.19815/j.jace.2022.04005]
 BA Guangzhong,ZHENG Xinxin,LIU Caiwei,et al.Experimental study on flexural performance of corroded reinforced concrete beams after fire exposure[J].Journal of Architecture and Civil Engineering,2024,41(01):138.[doi:10.19815/j.jace.2022.04005]
[8]陈 莎,刘永健,王 壮,等.钢桥表面相对湿度的边界条件计算方法[J].建筑科学与工程学报,2024,41(02):85.[doi:10.19815/j.jace.2024.03010]
 CHEN Sha,LIU Yongjian,WANG Zhuang,et al.Calculation methods for boundary conditions of relative humidity on steel bridge surface[J].Journal of Architecture and Civil Engineering,2024,41(01):85.[doi:10.19815/j.jace.2024.03010]
[9]李 刚,钟小春.寒区隧道围岩温度场分布特征及影响因素分析[J].建筑科学与工程学报,2024,41(02):143.[doi:10.19815/j.jace.2022.08039]
 LI Gang,ZHONG Xiaochun.Temperature field distribution characteristics in cold region tunnels and surrounding rock and analysis of influencing factors[J].Journal of Architecture and Civil Engineering,2024,41(01):143.[doi:10.19815/j.jace.2022.08039]

备注/Memo

备注/Memo:
收稿日期:2023-03-19
基金项目:国家自然科学基金项目(51678016,52278471)
通信作者:陈适才(1979-),男,工学博士,教授,博士生导师,E-mail:shicaichen@163.com。
更新日期/Last Update: 2024-01-25