|本期目录/Table of Contents|

[1]周金枝,吴 学,钟楚珩,等.基于改进MGM(1,1)模型的再生混凝土疲劳寿命预测[J].建筑科学与工程学报,2024,41(02):31-38.[doi:10.19815/j.jace.2022.08052]
 ZHOU Jinzhi,WU Xue,ZHONG Chuheng,et al.Fatigue life prediction of recycled concrete based on improved MGM(1,1)model[J].Journal of Architecture and Civil Engineering,2024,41(02):31-38.[doi:10.19815/j.jace.2022.08052]
点击复制

基于改进MGM(1,1)模型的再生混凝土疲劳寿命预测(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
41卷
期数:
2024年02期
页码:
31-38
栏目:
建筑材料
出版日期:
2024-03-30

文章信息/Info

Title:
Fatigue life prediction of recycled concrete based on improved MGM(1,1)model
文章编号:
1673-2049(2024)02-0031-08
作者:
周金枝1,2,吴 学1,3,钟楚珩1,石赐明1,施佳楠1
(1. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068; 2. 桥梁结构健康与安全国家重点实验室,湖北 武汉 430034; 3. 中建三局集团(深圳)有限公司,广东 深圳 518000)
Author(s):
ZHOU Jinzhi1,2, WU Xue1,3, ZHONG Chuheng1, SHI Ciming1, SHI Jianan1
(1. College of Civil Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei, China; 2. State Key Laboratory of Bridge Structure Health and Safety, Hubei University of Technology, Wuhan 430034, Hubei, China; 3. China Construction Third Engineering Bureau Group(Shenzhen)Co., Ltd, Shenzhen 518000, Guangdong, China)
关键词:
再生混凝土 灰色理论 马尔科夫模型 新陈代谢理论 粒子群算法 疲劳寿命
Keywords:
recycled concrete grey theory Markov model metabolic theory particle swarm algorithm fatigue life
分类号:
TU528
DOI:
10.19815/j.jace.2022.08052
文献标志码:
A
摘要:
准确预测再生混凝土(RC)疲劳寿命对其应用于路面及桥梁等项目具有重要意义。在灰色马尔科夫模型(MGM)的基础上,引入新陈代谢理论不断更新原始数列中的疲劳寿命数据,并结合粒子群算法优化状态区间的取值,提高其预测精度以适应混凝土疲劳寿命预测,再以不同应力水平的RC疲劳寿命试验结果作为原始数据,建立了基于改进的灰色马尔科夫模型的RC疲劳寿命预测模型,并对改进前后模型的精度以及预测结果进行对比分析。结果表明:RC疲劳寿命N服从两参数威布尔分布; 将预测值从lg(N)转化为疲劳寿命后进行误差分析可知,应力-疲劳寿命(S-N)曲线的预测精度较低,最大相对误差达到201.43%; MGM(1,1)模型相比于S-N曲线预测精度有所提升,但平均相对误差仍达到102.20%; 经两种算法理论改进后的MGM(1,1)模型预测精度有较大的提高,平均相对误差仅为5.62%; 引入其他文献试验数据进行验证并与原文献中模型进行对比分析发现,改进MGM(1,1)模型的误差波动幅度小且平均误差小于原文献中模型,平均相对误差仅为1.01%,说明改进的MGM(1,1)模型在对RC疲劳寿命预测上具有更高的精确度与可靠性。
Abstract:
Accurate prediction of the fatigue life of recycled concrete(RC)is important for the application of RC in pavements and bridges and other projects. Based on the grey Markov model(MGM), the fatigue life data in the original series were continuously updated by using the metabolic theory, and combined with the particle swarm algorithm to optimize the value of the state interval to improve its prediction accuracy for concrete fatigue life prediction. Then the fatigue life test results of RC with different stress levels were used as the original data to establish the fatigue life prediction model of RC based on the improved gray Markov model, and the accuracy of the model and the prediction results before and after improvement were compared and analyzed. The results show that the RC fatigue life N obeys the two-parameter Weibull distribution. The error analysis after converting the predicted values from lg(N)to fatigue life shows that the prediction accuracy of the stress-fatigue life (S-N) curve is low, with maximum relative error of 201.43%. The prediction accuracy of the MGM(1,1)model is improved compared with that of the S-N curve, but the average relative error still reaches 102.20%. The prediction accuracy of the MGM(1,1)model improved by the theoretical improvement of both algorithms has improved considerably, and the average relative error is only 5.62%. The improved MGM(1,1)model is found to have smaller error fluctuations and smaller mean errors than the model in the literature when the experimental data from other literature are introduced for validation and comparative analysis with the model in the literature, and the average relative error is only 1.01%, indicating that the improved MGM(1,1)model has higher accuracy and reliability in predicting the fatigue life of RC.

参考文献/References:

[1] XIAO J Z.Recycled aggregate concrete structures[M].Berlin:Springer,2018.
[2]肖建庄,李 宏.再生混凝土单轴受压疲劳性能[J].土木工程学报,2013,46(2):62-69.
XIAO Jianzhuang,LI Hong.Investigation on the fatigue behavior of recycled aggregate concrete under uniaxial compression[J].China Civil Engineering Journal,2013,46(2):62-69.
[3]侯永利,俞正兴,周磊磊,等.玄武岩纤维再生混凝士冻融后的弯曲疲劳特性[J].建筑科学与工程学报,2021,15(8):69-76.
HOU Yongli,YU Zhengxin,ZHOU Leilei,et al.Bending fatigue characteristics of frozen-thawed basalt fiber recycled concrete[J].Journal of Architecture and Civil Engineering,2021,15(8):69-76.
[4]寇佳亮,张亚茹,张 晶.冻融循环后高延性混凝土疲劳性能试验及S-N曲线研究[J].自然灾害学报,2019,28(5):75-85.
KOU Jialiang,ZHANG Yaru,ZHANG Jing.Experimental study on fatigue property and S-N curve of high ductile fiber concrete under freeze-thaw cycles[J].Journal of Natural Disasters,2019,28(5):75-85.
[5]MIURA T,SATO K,NAKAMURA H.Influence of primary cracks on static and fatigue compressive behavior of concrete under water[J].Construction and Building Materials,2021,305:124755.
[6]TAN Y,ZHOU C X,ZHOU J Z.Influence of the steel fiber content on the flexural fatigue behavior of recycled aggregate concrete[J].Advances in Civil Engineering,2020,2020:8839271.
[7]刘思峰.灰色系统理论及其应用[M].8版.北京:科学出版社,2017.
LIU Sifeng.Grey system theory and its application[M].8th ed.Beijing:Science Press,2017.
[8]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
DENG Julong.Course of grey system theory[M].Wuhan:Huazhong University of Technology Press,1990.
[9]高 矗,孔祥振,申向东.基于GM(1,1)的应力损伤轻骨料混凝土抗冻性评估[J].工程科学与技术,2021,53(4):184-190.
GAO Chu,KONG Xiangzhen,SHEN Xiangdong.Freeze-thaw resistance evaluation of lightweight aggregate concrete with stress damage based on GM(1,1)[J].Advanced Engineering Sciences,2021,53(4):184-190.
[10]侯永利,吕东朔,周磊磊,等.基于抗冻性指标的玄武岩纤维再生混凝土的寿命预测[J].功能材料,2021,52(12):12084-12089,12094.
HOU Yongli,LYU Dongshuo,ZHOU Leilei,et al.Life prediction of basalt fiber recycled concrete based on frost resistance index[J].Journal of Functional Materials,2021,52(12):12084-12089,12094.
[11]刘永连,卢哲安,袁晓辉,等.灰色自回归模型对钢纤维混凝土弯曲疲劳强度的预测[J].混凝土与水泥制品,2013(8):48-50.
LIU Yonglian,LU Zhean,YUAN Xiaohui,et al.Prediction of gray-autoregressive model on bending fatigue strength of steel fiber reinforced concrete(SFRC)[J].China Concrete and Cement Products,2013(8):48-50.
[12]杨军平,马 勇.改进的非线性灰色伯努利马尔科夫模型预测高强度混凝土强度[J].混凝土,2017(2):42-45,49.
YANG Junping,MA Yong.Strength of high strength concrete forecast based on the improved nonlinear grey Bernoulli-Markov forecasting model[J].Concrete,2017(2):42-45,49.
[13]ZHU C,YANG W B,WANG H L.Fatigue life prognosis of concrete using extended grey Markov model[J].Applied Mechanics and Materials,2013,275-277:1225-1228.
[14]普通混凝土力学性能试验方法标准:GB/T 50081—2002[S].北京:中国建筑工业出版社,2003.
Standard for test method of mechanical properties on ordinary concrete:GB/T 50081—2002[S].Beijing:China Architecture & Building Press,2003.
[15]ZHOU J Z,FU T T,ZHONG C H,et al.Flexural fatigue behaviors of silicon carbide recycled concrete in corrosive environments[J].Advances in Civil Engineering,2021,2021:7459777.
[16]SAINI B S,SINGH S P.Flexural fatigue life analysis of self compacting concrete containing 100% coarse recycled concrete aggregates[J].Construction and Building Materials,2020,253:119176.
[17]霍俊芳,慈天义,郝负洪,等.集料增强粉煤灰泡沫混凝土性能试验研究与模型预测[J].建筑科学与工程学报,2021,40(4):33-40.
HUO Junfang,CI Tianyi,HAO Fuhong,et al.Experimental study and model prediction of aggregate-reinforced fly ash foamed concrete[J].Journal of Architecture and Civil Engineering,2021,40(4):33-40.
[18]何晓雁,周 曜,刘平源,等.基于灰色理论的CBC单面冻融后抗压强度与孔结构参数关系研究[J].建筑科学与工程学报,2023,40(3):1-9.
HE Xiaoyan,ZHOU Yao,LIU Pingyuan,et al.Relationship between compressive strength and pore structure of CBC after single side freeze-thaw based on grey theory[J].Journal of Architecture and Civil Engineering,2023,40(3):1-9.
[19]YU B Y,SUN Z G,QI L.Freeze-thaw splitting strength analysis of PAC based on the gray-Markov model[J].Advances in Materials Science and Engineering,2021,2021:9954504.
[20]CUI H R,WU R R,ZHAO T.Decomposition and forecasting of CO2 emissions in China's power sector based on STIRPAT model with selected PLS model and a novel hybrid PLS-grey-Markov model[J].Energies,2018,11(11):2985.
[21]KENNEDY J,EBERHART R.Particle swarm optimization[C]//IEEE.Proceedings of International Conference on Neural Networks(ICNN'95).Perth:IEEE,2002:1942-1948.
[22]赵 毅.粒子群优化算法的改进和应用研究[D].沈阳:沈阳工业大学,2019.
ZHAO Yi.Research on improvement and application of particle swarm optimization[D].Shenyang:Shen-yang University of Technology,2019.
[23]马全党,江福才,范庆波,等.PSO-无偏灰色马尔科夫模型在船舶交通流量预测中的应用[J].中国航海,2019,42(1):97-103.
MA Quandang,JIANG Fucai,FAN Qingbo,et al.Application of PSO-unbiased grey Markov model in ship traffic flow prediction[J].Navigation of China,2019,42(1):97-103.

相似文献/References:

[1]丁发兴,方常靖,龚永智,等.再生混凝土单轴力学性能指标统一计算方法[J].建筑科学与工程学报,2014,31(04):16.
 DING Fa-xing,FANG Chang-jing,GONG Yong-zhi,et al.Unified Calculation Method of Uniaxial Mechanical Performance Index of Recycled Concrete[J].Journal of Architecture and Civil Engineering,2014,31(02):16.
[2]丁 陶,肖建庄.基于振动台试验的预制再生混凝土框架后浇边节点分析[J].建筑科学与工程学报,2013,30(03):78.
 DING Tao,XIAO Jian-zhuang.Analysis of Cast-in-situ Exterior Joints of Precast Recycled Aggregate Concrete Frame by Shaking Table Tests[J].Journal of Architecture and Civil Engineering,2013,30(02):78.
[3]肖建庄,郑世同,王 静.再生混凝土长龄期强度与收缩徐变性能[J].建筑科学与工程学报,2015,32(01):21.
 XIAO Jian-zhuang,ZHENG Shi-tong,WANG Jing.Long-term Strength, Shrinkage and Creep Properties of Recycled Aggregate Concrete[J].Journal of Architecture and Civil Engineering,2015,32(02):21.
[4]肖建庄,刘 胜,TRESSERRAS Joan.钢管/GFRP管约束再生混凝土柱偏心受压试验[J].建筑科学与工程学报,2015,32(02):21.
 XIAO Jian-zhuang,LIU Sheng,TRESSERRAS Joan.Eccentric Loading Test on Recycled Aggregate Concrete Columns Confined by Steel Tube/GFRP Tube[J].Journal of Architecture and Civil Engineering,2015,32(02):21.
[5]谢建和,李自坚,孙明炜.硅粉对纤维橡胶再生混凝土抗压性能影响试验[J].建筑科学与工程学报,2016,33(03):72.
 XIE Jian-he,LI Zi-jian,SUN Ming-wei.Experiment About Influence of Silica Fume on Compressive Performance of Fiber Reinforced Rubber Recycled Concrete[J].Journal of Architecture and Civil Engineering,2016,33(02):72.
[6]肖建庄,李宏,亓萌.基于静载强度分布的再生混凝土疲劳强度预测[J].建筑科学与工程学报,2010,27(04):7.
 XIAO Jian-zhuang,LI Hong,QI Meng.Fatigue Strength Prediction of Recycled Aggregate ConcreteBased on Static Strength Distribution[J].Journal of Architecture and Civil Engineering,2010,27(02):7.
[7]肖建庄,朱永明,王璞瑾,等.再生混凝土U型叠合梁抗剪性能[J].建筑科学与工程学报,2012,29(02):1.
 XIAO Jian-zhuang,ZHU Yong-ming,WANG Pu-jin,et al.Shear Behavior of Recycled Concrete U-shaped Composite Beams[J].Journal of Architecture and Civil Engineering,2012,29(02):1.
[8]肖建庄,黄运标,郑永朝.高温后再生混凝土的残余抗折强度[J].建筑科学与工程学报,2009,26(03):32.
 XIAO Jian-zhuang,HUANG Yun-biao,ZHENG Yong-chao.Residual Flexural Strength of Recycled ConcreteAfter Elevated-temperatures[J].Journal of Architecture and Civil Engineering,2009,26(02):32.
[9]肖建庄,雷斌.再生混凝土碳化模型与结构耐久性设计[J].建筑科学与工程学报,2008,25(03):66.
 XIAO Jian-zhuang,LEI Bin.Carbonation Model and Structural Durability Design for Recycled Concrete[J].Journal of Architecture and Civil Engineering,2008,25(02):66.
[10]郭 凯,马浩辉,王 强.氧化石墨烯对再生混凝土界面过渡区的影响[J].建筑科学与工程学报,2018,35(05):217.
 GUO Kai,MA Hao-hui,WANG Qiang.Effect of Graphene Oxide on Interfacial Transition Zone of Recycled Concrete[J].Journal of Architecture and Civil Engineering,2018,35(02):217.

备注/Memo

备注/Memo:
收稿日期:2023-08-16
基金项目:桥梁结构健康与安全国家重点实验室开放课题(BHSKL19-04-KF); 湖北省教研项目(2017314); 湖北工业大学博士启动基金项目(BSQD2020051)
作者简介:周金枝(1964-),女,工学博士,教授,博士生导师,E-mail:hgzhougzhou@126.com。
通信作者:钟楚珩(1989-),男,工学博士,讲师,E-mail:chuheng.zhong@hbut.edu.cn。
更新日期/Last Update: 2024-03-25