|本期目录/Table of Contents|

[1]肖建庄,周有威,李文明,等.服役桥梁拆解基本方法与资源化利用[J].建筑科学与工程学报,2025,42(02):142-152.[doi:10.19815/j.jace.2024.06017]
 XIAO Jianzhuang,ZHOU Youwei,LI Wenming,et al.Basic deconstruction method and resource utilization for bridges in service[J].Journal of Architecture and Civil Engineering,2025,42(02):142-152.[doi:10.19815/j.jace.2024.06017]
点击复制

服役桥梁拆解基本方法与资源化利用(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年02期
页码:
142-152
栏目:
桥隧工程
出版日期:
2025-03-20

文章信息/Info

Title:
Basic deconstruction method and resource utilization for bridges in service
文章编号:
1673-2049(2025)02-0142-11
作者:
肖建庄1,2,3,周有威1,3,李文明2,韩玉4,闫强5,何志芬6
(1. 广西大学 土木建筑工程学院,广西 南宁 530004; 2. 同济大学 土木工程学院,上海 200092; 3. 广西大学 双碳科学与技术研究院,广西 南宁 530004; 4. 广西路桥工程集团有限公司,广西 南宁 530200; 5. 平陆运河集团有限公司,广西 南宁 530022; 6. 广西交通设计集团有限公司,广西 南宁 530022)
Author(s):
XIAO Jianzhuang1,2,3, ZHOU Youwei1,3, LI Wenming2, HAN Yu4, YAN Qiang5, HE Zhifen6
1.School of Civil Engineering and Architecture,Guangxi University,Nanning 530004,Guangxi,China;2.College of Civil Engineering,Tongji University,Shanghai 200092,China;3.Institute of Science and Technology for Carbon Peak&Neutrality,Guangxi University,Nanning 530004,Guangxi, China;4.Guangxi Road and Bridge Engineering Group Co.,Ltd.,Nanning 530200,Guangxi,China;5.Pinglu Canal Group Co.,Ltd.,Nanning 530022,Guangxi,China;6.Guangxi Communications Design Group Co.,Ltd.,Nanning 530022,Guangxi,China
关键词:
桥梁结构 生命周期 拆解设计 拆解工艺 资源化利用
Keywords:
bridge structure life cycle deconstruction design deconstruction method resource utilization
分类号:
TU997
DOI:
10.19815/j.jace.2024.06017
文献标志码:
A
摘要:
为提高桥梁类工程拆除固废的资源化利用水平,实现服役桥梁结构拆解后的分级利用,针对现有桥梁过于粗放的拆除方式及固废未充分资源化利用的现状,从拆解设计、拆解工艺和资源化再利用等多角度,初步构建了以安全性为前提、层级资源化利用为目标的桥梁拆解理论技术体系,提出了桥梁拆解的安全性和再利用性原则,分析了桥梁拆解工艺与再利用性之间的联系,讨论了不同层级(材料、构件和结构)资源化利用的逻辑关联,总结了多种拆解工艺的优劣势并给出了今后桥梁拆解工艺的研究建议。以钦江沿线待拆解桥梁为例,基于安全的拆解设计和施工,依据桥梁结构特点实现了拆解桥梁的资源化再利用目标,提高了桥梁再利用水平和资源化利用效率。结果表明:采用拆解的策略实现桥梁的低损化解构有助于提升旧桥的资源化再利用水平; 通过构建桥梁拆解与资源化利用技术框架,使桥梁建造由传统的单链范式转变为循环范式,可为未来桥梁的绿色低碳建造提供研究依据。
Abstract:
To improve the waste resource utilization level of bridge deconstruction and realize the hierarchical utilization of bridges after demolition, faced with the rough demolition method and the underutilized status quo of waste resources for bridges in service, a theory and technology system of bridge deconstruction with safety as the primary prerequisite and hierarchical resource utilization as the goal was established from multiple perspectives of the deconstruction design, deconstruction technology and resource reuse. The principles of safety and reusability of bridge deconstruction were presented, and the links between bridge deconstruction methods and reusability were analyzed. In addition, the logical connections between the different levels(material, component and structure)of resource utilization were discussed, the advantages and disadvantages of various deconstruction methods were summarized and research suggestions for future bridge deconstruction methods were put forward. Taking the deconstructed bridges along the Qinjiang river as example, based on safe design and deconstruction of bridges, the target of resource reusability of bridge components was realized considering the characteristics of bridge structures, and the bridge reuse level and the resource utilization efficiency were improved. The results show that the deconstruction strategy achieving low damage deconstruction of bridges can help to improve the level of resource reuse of old bridges. By constructing a framework for bridge deconstruction and resource utilization, the bridge construction is transformed from the traditional single-chain paradigm to a cyclic one, providing a research basis for the green and low-carbon construction of future bridges.

参考文献/References:

[1] 李小鹏.在可持续交通发展道路上迈出新步伐[J].交通运输部管理干部学院学报,2023,33(4):3-4.
LI Xiaopeng. Making further progress with the sustainable transport[J]. Journal of Transport Management Institute Ministry of Transport, 2023, 33(4): 3-4.
[2]MOHANTY M, MOHAPATRA S S, NAYAK S. Efficacy of C&D waste in base/subbase layers of pavement-current trends and future prospectives: a systematic review[J]. Construction and Building Materials, 2022, 340: 127726.
[3]王一帆.公路桥梁生命周期环境影响评价分析: 以广东某高速公路桥梁为例[D].广州:华南理工大学,2017.
WANG Yifan. Analysis of life cycle environmental impact assessment of highway bridges: taking an expressway bridge in Guangdong as an example[D]. Guangzhou: South China University of Technology, 2017.
[4]FENNER R, AINGER C. A review of sustainability in civil engineering: why much more commitment is needed[J]. Proceedings of the Institution of Civil Engineers - Civil Engineering, 2020, 173(2): 69-77.
[5]肖建庄,曾 亮,夏 冰,等.拆解工程学理论架构与基本方法[J].建筑结构学报,2022,43(2):197-206.
XIAO Jianzhuang, ZENG Liang, XIA Bing, et al. Theoretical framework and fundamental method for deconstruction engineering[J]. Journal of Building Structures, 2022, 43(2): 197-206.
[6]ANASTASIADES K, BLOM J, BUYLE M, et al. Translating the circular economy to bridge construction: lessons learnt from a critical literature review[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109522.
[7]夏 冰,肖建庄,吕凤悟,等.结构拆解力学分析基础与基本方法[J].同济大学学报(自然科学版), 2020,48(8):1083-1092,1198.
XIA Bing, XIAO Jianzhuang, LÜ Fengwu, et al. Mechanical analysis and fundamental philosophy for deconstruction of structures[J]. Journal of Tongji University(Natural Science), 2020, 48(8): 1083-1092, 1198.
[8]吕大刚,宋鹏彦,崔双双,等.结构鲁棒性及其评价指标[J].建筑结构学报,2011,32(11):44-54.
LÜ Dagang, SONG Pengyan, CUI Shuangshuang, et al. Structural robustness and its assessment indicators[J]. Journal of Building Structures, 2011, 32(11): 44-54.
[9]王 瀚.遂宁涪江预应力连续梁桥拆桥安全性分析[D].重庆:重庆交通大学,2021.
WANG Han. Safety analysis of demolition of prestressed continuous beam bridge in Fujiang, Suining[D]. Chongqing: Chongqing Jiaotong University, 2021.
[10]NAZEMI M, CHOI J, ZHANG Q. Reuse and recycling feasibility assessment for bridge components: a case study of a bridge investigation in Florida[C]//SHANE J S, MADSON K M, MO Y, et al. Proceedings of the Construction Research Congress 2024. Des Moines: ASCE, 2024: 578-588.
[11]李 琦.大跨度预应力混凝土桁式组合拱桥拆除技术研究[D].贵阳:贵州大学,2021.
LI Qi. Study on demolition technology of long-span prestressed concrete truss composite arch bridge[D]. Guiyang: Guizhou University, 2021.
[12]SPRINGER J, JÜNGER U, KINA S. Demolition of the old bridge over the Rhine in Wiesbaden-Schierstein[J]. Stahlbau, 2019, 88(8): 744-752.
[13]吴 超.大跨径钢桁架拱桥拆除关键技术研究[D].重庆:重庆交通大学,2019.
WU Chao. Research on key technology of dismantling long-span steel truss arch bridge[D]. Chongqing: Chongqing Jiaotong University, 2019.
[14]肖建庄,胡茂昂,王 婉.基于BIM的混凝土结构构件再利用构架[J].结构工程师,2017,33(3):8-15.
XIAO Jianzhuang, HU Maoang, WANG Wan. Basic frame on reuse of concrete structural component based on BIM[J]. Structural Engineers, 2017, 33(3): 8-15.
[15]严肖锋,孙贤斌,邹贻权,等.基于数字孪生的桥梁拆除多维模型[J].湖北工业大学学报,2022,37(5):110-114.
YAN Xiaofeng, SUN Xianbin, ZOU Yiquan, et al. Multi-dimensional model of demolishing old bridge based on digital twin[J]. Journal of Hubei University of Technology, 2022, 37(5): 110-114.
[16]黄玮征,董宇路,张锡霖.BIM技术在跨内河航道桥梁拆除施工中的应用研究:以上海浦星公路桥工程为例[J].土木建筑工程信息技术,2019,11(5):36-42.
HUANG Weizheng, DONG Yulu, ZHANG Xilin. Application of BIM technology in bridge demolition construction across inland waterway: taking the Shanghai Puxing highway bridge project as an example[J]. Journal of Information Technology in Civil Engineering and Architecture, 2019, 11(5): 36-42.
[17]桥梁拆除技术规范:DB42/T 1253—2017[S].武汉:湖北省质量技术监督局,2017.
Technical specification for bridge demolition: DB42/T 1253—2017[S]. Wuhan: Hubei Bureau of Quality and Technical Supervision, 2017.
[18]公路混凝土桥梁拆除技术规程:T/CECS G:M61-01—2019[S].北京:人民交通出版社,2019.
Technical specifications for road concrete bridge demolition: T/CECS G: M61-01—2019[S]. Beijing: China Communications Press, 2019.
[19]张 帆.连续刚构钢筋混凝土箱梁拆除技术研究[D].郑州:郑州大学,2013.
ZHANG Fan. Study on demolition technology of continuous rigid frame reinforced concrete box girder[D]. Zhengzhou: Zhengzhou University, 2013.
[20]赵 涵.大跨度预应力混凝土桁式组合拱桥拆除技术研究[D].重庆:重庆交通大学,2013.
ZHAO Han. Study on demolition technology of long-span prestressed concrete truss composite arch bridge[D]. Chongqing: Chongqing Jiaotong University, 2013.
[21]周林刚,李良军.桥梁拆除施工安全技术[J].施工技术:中英文,2022,51(10):87-91.
ZHOU Lingang, LI Liangjun. Construction safety technology of bridge demolition[J]. Construction Technology, 2022, 51(10): 87-91.
[22]叶建军,陈 飞,肖建庄,等.钢筋混凝土结构绿色爆破拆除技术[J].爆破,2019,36(3):90-97.
YE Jianjun, CHEN Fei, XIAO Jianzhuang, et al. Green blasting demolition technology of reinforced concrete structures[J]. Blasting, 2019, 36(3): 90-97.
[23]叶建军,彭庆波,肖建庄,等.梁柱预埋孔机械切割异地爆破绿色拆除技术[J].建筑科学与工程学报,2023,40(6):111-117.
YE Jianjun, PENG Qingbo, XIAO Jianzhuang, et al. Green demolishing technology of beams or columns with embedded holes by mechanical cutting and off-site blasting[J]. Journal of Architecture and Civil Engineering, 2023, 40(6): 111-117.
[24]HOU W Q, LIANG S Y, ZHANG T, et al. Low-carbon emission demolition of an existing urban bridge based on SPMT technology and full procedure monitoring[J]. Buildings, 2023, 13(6): 1379.
[25]YU X D, WANG H H, JING H Q. Support position optimization with safety factor in the demolition and rebuilding of a bridge using the SPMT method: a case study[J]. Advances in Structural Engineering, 2022, 25(8): 1701-1713.
[26]程 晔,谢瑾荣,张乐亲.TPZ/48钢箱梁式架桥机施工状态下屈曲稳定性研究[J].中国铁道科学,2012,33(1):35-40.
CHENG Ye, XIE Jinrong, ZHANG Leqin. Study on the buckling stability of TPZ/48 steel box girder type bridge erection machine under construction state[J]. China Railway Science, 2012, 33(1): 35-40.
[27]袁智杰,茅建校,王 浩,等.步履式架桥机静动力性能测试与评估研究[J].哈尔滨工程大学学报,2023,44(3):345-352.
YUAN Zhijie, MAO Jianxiao, WANG Hao, et al. Test and evaluation of the static and dynamic performance of the walking bridge erection machine[J]. Journal of Harbin Engineering University, 2023, 44(3): 345-352.
[28]王小花,陈宜言,何晓晖,等.SPMT快速拆架桥技术运用[J]. 建筑结构,2019,49(增1):926-930.
WANG Xiaohua, CHEN Yiyan, HE Xiaohui, et al. Application of SPMT rapid bridge dismantling technology[J]. Building Structure, 2019, 49(S1): 926-930.
[29]ARDANI A A, SHANA LINDSEY R, MALLELA J. One-weekend job: rapid removal and replacement of 4 500 South bridge in Salt Lake city, Utah[J]. Transportation Research Record, 2010, 2200(1): 12-16.
[30]WEN H Q, ZHANG Z L, LUO W J, et al. The key technologies research in demolition construction of Liuxi river bridge[J]. Advanced Materials Research, 2014, 919/920/921: 607-614.
[31]贾布裕,余晓琳,颜全胜.流溪河大桥主桥拆除施工技术[J].桥梁建设,2014,44(6):107-111.
JIA Buyu, YU Xiaolin, YAN Quansheng. Construction techniques for demolition of main bridge of Liuxi river bridge[J]. Bridge Construction, 2014, 44(6): 107-111.
[32]刘永健,唐志伟,肖 军,等.大跨度预应力混凝土桥智能拆除技术现状与展望[J].建筑科学与工程学报,2022,39(4):1-24.
LIU Yongjian, TANG Zhiwei, XIAO Jun, et al. Present situation and prospect of intelligent demolition technology for long-span prestressed concrete bridge[J]. Journal of Architecture and Civil Engineering, 2022, 39(4): 1-24.
[33]杨 洋,吴二军,蓝戊己,等.连续桥梁顶升改造解联方案分析[J].水利与建筑工程学报,2013,11(6):35-39.
YANG Yang, WU Erjun, LAN Wuji, et al. Analysis on contact-removing scheme for lifting and reconstructing of continuous bridge[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(6): 35-39.
[34]肖建庄,陈立浩,叶建军,等.混凝土结构拆除技术与绿色化发展[J].建筑科学与工程学报,2019,36(5):1-10.
XIAO Jianzhuang, CHEN Lihao, YE Jianjun, et al. Technology and green development of demolition for concrete structures[J]. Journal of Architecture and Civil Engineering, 2019, 36(5): 1-10.
[35]KÜPFER C, BASTIEN-MASSE M, FIVET C. Reuse of concrete components in new construction projects: critical review of 77 circular precedents[J]. Journal of Cleaner Production, 2023, 383: 135235.
[36]肖建庄,马旭伟,刘 琼,等.全再生混凝土概念的衍化与研究进展[J].建筑科学与工程学报,2021,38(2):1-15.
XIAO Jianzhuang, MA Xuwei, LIU Qiong, et al. Evolvement and research progress of concept for full recycled concrete[J]. Journal of Architecture and Civil Engineering, 2021, 38(2): 1-15.
[37]RAO A, JHA K N, MISRA S. Use of aggregates from recycled construction and demolition waste in concrete[J]. Resources, Conservation and Recycling, 2007, 50(1): 71-81.
[38]CHEN W, JIN R Y, XU Y D, et al. Adopting recycled aggregates as sustainable construction materials: a review of the scientific literature[J]. Construction and Building Materials, 2019, 218: 483-496.
[39]SHI C J, LI Y K, ZHANG J K, et al. Performance enhancement of recycled concrete aggregate — a review[J]. Journal of Cleaner Production, 2016, 112: 466-472.
[40]ZHANG T, CHEN M, WANG Y T, et al. Roles of carbonated recycled fines and aggregates in hydration, microstructure and mechanical properties of concrete: a critical review[J]. Cement and Concrete Composites, 2023, 138: 104994.
[41]XIA B, XIAO J Z, LI S F. Sustainability-based reliability design for reuse of concrete components[J]. Structural Safety, 2022, 98: 102241.
[42]刘 宁.平陆运河工程建设关键问题研究与思考[J].水运工程,2024(6):1-11.
LIU Ning. Research and contemplation on key issues in construction of Pinglu canal project[J]. Port & Waterway Engineering, 2024(6):1-11.

相似文献/References:

[1]宋波,李凯文,黄帅.桩墩配筋率比对桥梁结构塑性区长度的影响[J].建筑科学与工程学报,2013,30(04):41.
 SONG Bo,LI Kai-wen,HUANG Shuai.Influence of Pile-pier Reinforcement Ratio on Plastic Hinge Length of Bridge Structure[J].Journal of Architecture and Civil Engineering,2013,30(02):41.
[2]郭猛,刘洪,白文静.混凝土桥梁结构的等耐久性设计[J].建筑科学与工程学报,2010,27(01):117.
 GUO Meng,LIU Hong,BAI Wen-jing.Equal Durability Design of Concrete Bridge Structure[J].Journal of Architecture and Civil Engineering,2010,27(02):117.
[3]肖建庄,陈立浩,叶建军,等.混凝土结构拆除技术与绿色化发展[J].建筑科学与工程学报,2019,36(05):1.
 XIAO Jian-zhuang,CHEN Li-hao,YE Jian-jun,et al.Technology and Green Development of Demolition for Concrete Structures[J].Journal of Architecture and Civil Engineering,2019,36(02):1.
[4]史艳莉,张文旭,贾志路,等.内配型钢矩形钢管混凝土轴压短柱生命周期内的力学性能[J].建筑科学与工程学报,2020,37(03):81.[doi:10.19815/j.jace.2019.05053]
 SHI Yan-li,ZHANG Wen-xu,JIA Zhi-lu,et al.Mechanical Behavior of Rectangular Concrete-filled Steel Tubular Stub Columns with Encased Profiled Steel Subjected to Axial Load in Life Cycle[J].Journal of Architecture and Civil Engineering,2020,37(02):81.[doi:10.19815/j.jace.2019.05053]
[5]吴 维,卢玉南,覃英宏,等.生物炭混凝土生命周期CO2排放评价[J].建筑科学与工程学报,2023,40(03):20.[doi:10.19815/j.jace.2021.11046]
 WU Wei,LU Yunan,QIN Yinghong,et al.Life cycle assessment on CO2 emission for biochar concrete[J].Journal of Architecture and Civil Engineering,2023,40(02):20.[doi:10.19815/j.jace.2021.11046]

备注/Memo

备注/Memo:
收稿日期:2024-06-05
基金项目:广西科技重大专项(AA23062022,AA23062054)
作者简介:肖建庄(1968-),男,工学博士,教授,博士生导师,E-mail:jzxiao@gxu.edu.cn。
Author resume: XIAO Jianzhuang(1968-), male, PhD, professor, E-mail: jzxiao@gxu.edu.cn.
更新日期/Last Update: 2025-03-20