[1] 施楚贤.砌体结构[M].4版.北京:中国建筑工业出版社,2017.
SHI Chuxian. Masonry structure[M]. 4th ed. Beijing: China Architecture & Building Press, 2017.
[2]LOURENCO P B. Computational strategies for masonry structures[D]. Delft: Delft University of Technology, 1996.
[3]刘立鹏,唐岱新.无筋砌体材料本构模型述评[J].哈尔滨工业大学学报,2004,36(9):1256-1259.
LIU Lipeng, TANG Daixin. Constitutive modeling for unreinforced masonry materials[J]. Journal of Harbin Institute of Technology, 2004, 36(9): 1256-1259.
[4]D'ALTRI A M, SARHOSIS V, MILANI G, et al. Modeling strategies for the computational analysis of unreinforced masonry structures:review and classification[J]. Archives of Computational Methods in Engineering, 2020, 27(4): 1153-1185.
[5]FACCONI L, MINELLI F, VECCHIO F J. Predicting uniaxial cyclic compressive behavior of brick masonry: new analytical model[J]. Journal of Structural Engineering, 2018, 144(2): 04017213.
[6]刘立鹏,翟希梅,张连振,等.砌体材料的应力-应变关系[J].低温建筑技术,2007,29(6):63-65.
LIU Lipeng, ZHAI Ximei, ZHANG Lianzhen, et al. A survey on constitutive law of masonry[J]. Low Temperature Architecture Technology, 2007, 29(6): 63-65.
[7]李 妍,孟广伟,尹新生,等.砌体本构关系的研究进展[J].吉林建筑工程学院学报,2009,26(4):5-8.
LI Yan, MENG Guangwei, YIN Xinsheng, et al. Summarized on research achievements of constitutive relationship of masonry[J]. Journal of Jilin Institute of Architecture & Civil Engineering, 2009, 26(4): 5-8.
[8]刘桂秋,颜友清,施楚贤.砌体受压本构关系统一模型的研究[J].湖南大学学报(自然科学版),2009,36(11):6-9.
LIU Guiqiu, YAN Youqing, SHI Chuxian. Research on the unified model of the compressive constitutive relations of masonry[J]. Journal of Hunan University(Natural Sciences), 2009, 36(11): 6-9.
[9]董广萍,杨卫忠,樊 濬.砌体本构关系的研究新进展[J].河南科学,2016,34(1):50-54.
DONG Guangping, YANG Weizhong, FAN Jun. Recent research development of masonry constitutive relation[J]. Henan Science, 2016, 34(1): 50-54.
[10]LIU X J, LIU L X, WANG Y M. Based on experiment of constitutive model of load-bearing insulation masonry[J]. Applied Mechanics and Materials, 2012, 204-208: 1089-1093.
[11]鲁园春.轴心受压砖砌体的试验与研究[D].长沙:湖南大学,2005.
LU Yuanchun. The experiment and research on axial compression brick masonry[D]. Changsha: Hunan University, 2005.
[12]AUGENTI N, PARISI F. Constitutive models for tuff masonry under uniaxial compression[J]. Journal of Materials in Civil Engineering, 2010, 22(11): 1102-1111.
[13]PARISI F, AUGENTI N. Assessment of unreinforced masonry cross sections under eccentric compression accounting for strain softening[J]. Construction and Building Materials, 2013, 41: 654-664.
[14]OUYANG J, WU F B, LÜ W R, et al. Prediction of compressive stress-strain curves of grouted masonry[J]. Construction and Building Materials, 2019, 229: 116826.
[15]AVOSSA A M, MALANGONE P. Seismic performance assessment of masonry structures with a modified “concrete” model[J]. Bulletin of Earthquake Engineering, 2015, 13(9): 2693-2718.
[16]ADDESSI D, MARFIA S, SACCO E. A plastic nonlocal damage model[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(13/14): 1291-1310.
[17]GATTA C, ADDESSI D, VESTRONI F. Static and dynamic nonlinear response of masonry walls[J]. International Journal of Solids and Structures, 2018, 155: 291-303.
[18]GRZYB K, JASINSKI R. Parameter estimation of a homogeneous macromodel of masonry wall made of autoclaved aerated concrete based on standard tests[J]. Structures, 2022, 38: 385-401.
[19]KARAPITTA L, MOUZAKIS H, CARYDIS P. Explicit finite-element analysis for the in-plane cyclic behavior of unreinforced masonry structures[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(2): 175-193.
[20]CALDERINI C, LAGOMARSINO S. Continuum model for in-plane anisotropic inelastic behavior of masonry[J]. Journal of Structural Engineering, 2008, 134(2): 209-220.
[21]CHISARI C, MACORINI L, IZZUDDIN B A. An anisotropic plastic-damage model for 3D nonlinear simulation of masonry structures[J]. International Journal for Numerical Methods in Engineering, 2023, 124(6): 1253-1279.
[22]PORTIOLI F P A, LOURENÇO P B. Nonlinear static analysis of masonry structures with mortar joints and cracking units by optimization-based rigid block models[J]. Earthquake Engineering & Structural Dynamics, 2024, 53(13): 3963-3982.
[23]ZAMPIERI P, PIAZZON R, PANT B, et al. A simplified modelling approach for the in-plane analysis of masonry structures strengthened by FRCMs[J]. Key Engineering Materials, 2022, 916: 201-206.
[24]SHEN J X, REN X D, ZHANG Y Q, et al. Slip-enhanced plastic-damage constitutive model for masonry structures[J]. Engineering Structures, 2022, 254: 113792.
[25]NINO S D, LUONGO A. A simple homogenized orthotropic model for in-plane analysis of regular masonry walls[J]. International Journal of Solids and Structures, 2019, 167: 156-169.
[26]WEBER M, THOMA K, HOFMANN J. Finite element analysis of masonry under a plane stress state[J]. Engineering Structures, 2021, 226: 111214.
[27]TISSERAND P J, ROSTAGNI H, GIRY C, et al. An orthotropic damage model with internal sliding and friction for masonry-like material[J]. Engineering Fracture Mechanics, 2022, 267: 108397.
[28]PELÀ L, CERVERA M, OLLER S, et al. A localized mapped damage model for orthotropic materials[J]. Engineering Fracture Mechanics, 2014, 124: 196-216.
[29]FU Q S, QIAN J, BESKOS D E. Inelastic anisotropic constitutive models based on evolutionary linear transformations on stress tensors with application to masonry[J]. Acta Mechanica, 2018, 229(2): 719-743.
[30]WU B Y, DAI J W, BAI W, et al. Triaxial elastoplastic damage constitutive model of unreinforced clay brick masonry wall[J]. Earthquake Engineering and Engineering Vibration, 2023, 22(1): 157-172.
[31]KOURIS L A S, KAPPOS A J. Detailed and simplified non-linear models for timber-framed masonry structures[J]. Journal of Cultural Heritage, 2012, 13(1): 47-58.
[32]PELÀ L, CERVERA M, ROCA P. Continuum damage model for orthotropic materials: application to masonry[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(9/10/11/12): 917-930.
[33]PELÀ L, CERVERA M, ROCA P. An orthotropic damage model for the analysis of masonry structures[J]. Construction and Building Materials, 2013, 41: 957-967.
[34]BILKO P, MAYSZKO L. An orthotropic elastic-plastic constitutive model for masonry walls[J]. Materials, 2020, 13(18): 4064.
[35]岳健广,钱 江,伍 凯,等.用于砖砌体修正屈服面的塑性损伤模型[J].力学季刊,2012,33(1):146-152.
YUE Jianguang, QIAN Jiang, WU Kai,et al. A modified plastic damage model for masonry structure[J]. Chinese Quarterly of Mechanics, 2012, 33(1): 146-152.
[36]DROUGKAS A. Macro-modelling of orthotropic damage in masonry: combining micro-mechanics and continuum FE analysis[J]. Engineering Failure Analysis, 2022, 141: 106704.
[37]CHISARI C, MACORINI L, IZZUDDIN B A. Multiscale model calibration by inverse analysis for nonlinear simulation of masonry structures under earthquake loading[J]. International Journal for Multiscale Computational Engineering, 2020, 18(2): 241-263.
[38]牛力军,张文芳.砖砌体双参数单轴受压弹塑性损伤力学模型[J].力学与实践,2017,39(1):35-39.
NIU Lijun, ZHANG Wenfang. Uniaxial compression elastic-plastic damage model with double parameters of brick masonry[J]. Mechanics in Engineering, 2017, 39(1): 35-39.
[39]杨卫忠.砌体受压本构关系模型[J].建筑结构,2008,38(10):80-82.
YANG Weizhong. Constitutive relationship model for masonry materials in compression[J]. Building Structure, 2008, 38(10): 80-82.
[40]杨卫忠,樊 濬.砌体受压应力-应变关系[J].郑州大学学报(工学版),2007,28(1):47-50.
YANG Weizhong, FAN Jun. A generic stress-strain equation for masonry materials in compression[J]. Journal of Zhengzhou University(Engineering Science), 2007, 28(1): 47-50.
[41]KREJCÍ T, KOUDELKA T, BERNARDO V, et al.Macroscopic response of regular masonry from homogenization:comparison of isotropic and orthotropic damage models[J]. MATEC Web of Conferences, 2020, 310: 00052.
[42]KREJCÍ T, KOUDELKA T, BERNARDO V, et al. Effective elastic and fracture properties of regular and irregular masonry from nonlinear homogenization[J]. Computers & Structures, 2021, 254: 106580.
[43]BERNARDO V, KREJCÍ T, KOUDELKA T, et al. Homogenization of unreinforced old masonry wall comparison of scalar isotropic and orthotropic damage models[J]. Acta Polytechnica CTU Proceedings, 2020, 26: 1-6.
[44]ADDESSI D, SACCO E. A homogenized model for the nonlinear analysis of masonry columns in compression[J]. European Journal of Mechanics - A/Solids, 2018, 71: 335-350.
[45]MASSART T, BOUILLARD P, GEERS M G D, et al. Anisotropic damage effects in masonry walls[J]. Journal de Physique IV, 2003, 105(3): 149-156.
[46]郑山锁,赵 鹏.冻融循环条件下砌体受压损伤本构模型[J].工业建筑,2015,45(2):15-18.
ZHENG Shansuo, ZHAO Peng. Constitutive relationship model for masonry in compression under action of freeze-thaw cycle[J]. Industrial Construction, 2015, 45(2): 15-18.
[47]商效瑀,郑山锁,徐 强,等.冻融循环下轴心受压砖砌体损伤本构关系模型[J].建筑材料学报,2015,18(6):1045-1049,1054.
SHANG Xiaoyu, ZHENG Shansuo, XU Qiang, et al. Damage constitute model of brick masonry under freeze-thaw cycles and axial compression[J]. Journal of Building Materials, 2015, 18(6): 1045-1049, 1054.
[48]王浩宇,淳 庆,张承文,等.采用弹塑性损伤力学的砖石建筑遗产结构性能非线性有限元分析[J].华侨大学学报(自然科学版),2022,43(3):338-347.
WANG Haoyu, CHUN Qing, ZHANG Chengwen, et al. Nonlinear finite element analysis of structural performance of bricks and stones building heritage using elastoplastic damage mechanics[J]. Journal of Huaqiao University(Natural Science), 2022, 43(3): 338-347.
[49]QUINTEROS R D, OLLER S, NALLIM L G. Nonlinear homogenization techniques to solve masonry structures problems[J]. Composite Structures, 2012, 94(2): 724-730.
[50]CERVERA M, TESEI C, VENTURA G. Cracking of quasi-brittle structures under monotonic and cyclic loadings: a d+/d- damage model with stiffness recovery in shear[J]. International Journal of Solids and Structures, 2018, 135: 148-171.
[51]富秋实,钱 江.基于各向异性损伤本构模型的砌体结构抗震分析[J].计算力学学报,2018,35(6):663-668.
FU Qiushi, QIAN Jiang. Seismic analysis of masonry structures based on anisotropic damage constitutive model[J]. Chinese Journal of Computational Mechanics, 2018, 35(6): 663-668.
[52]TESCHEMACHER T, KALKBRENNER P, PELÀ L, et al. An orthotropic damage model for masonry walls with consistent damage evolution laws[J]. Materials and Structures, 2023, 56(8): 151.
[53]BERTO L, SAETTA A, SCOTTA R, et al. An orthotropic damage model for masonry structures[J]. International Journal for Numerical Methods in Engineering, 2002, 55(2): 127-157.
[54]PODESTAGRAVE S.A damage model for the analysis of the seismic response of monumental buildings[J]. Journal of Earthquake Engineering, 2005, 9(3): 419-444.
[55]TESEI C, VENTURA G. A unilateral nonlocal tensile damage model for masonry structures[J]. Procedia Structural Integrity, 2016, 2: 2690-2697.
[56]ZUCCHINI A, LOURENÇO P B. A coupled homogenisation-damage model for masonry cracking[J]. Computers & Structures, 2004, 82(11/12): 917-929.
[57]NIE Y, SHEIKH A, GRIFFITH M, et al. A damage-plasticity based interface model for simulating in-plane/out-of-plane response of masonry structural panels[J]. Computers & Structures, 2022, 260: 106721.
[58]VERSTRYNGE E, SCHUEREMANS L, VAN GEMERT D, et al. Modelling and analysis of time-dependent behaviour of historical masonry under high stress levels[J]. Engineering Structures, 2011, 33(1): 210-217.
[59]PAPA E, TALIERCIO A. A visco-damage model for brittle materials under monotonic and sustained stresses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(3): 287-310.
[60]VERSTRYNGE E, SCHUEREMANS L, VAN GEMERT D. Time-dependent mechanical behavior of lime-mortar masonry[J]. Materials and Structures, 2011, 44(1): 29-42.
[61]CECCHI A, TRALLI A. A homogenized viscoelastic model for masonry structures[J]. International Journal of Solids and Structures, 2012, 49(13): 1485-1496.
[62]CHAKER A, REKIK A, LANGLET A, et al. Semi-numerical micromechanical model for viscoelastic microcracked masonry[J]. Mechanics of Materials, 2022, 166: 104218.
[63]REKIK A, GASSER A. Numerical homogenization model for effective creep properties of microcracked masonry[J]. International Journal of Solids and Structures, 2016, 102: 297-320.
[64]XU G, GUTIERREZ M, ARORA K, et al. Visco-plastic response of deep tunnels based on a fractional damage creep constitutive model[J]. Acta Geotechnica, 2022, 17(2): 613-633.
[65]CREAZZA G, MATTEAZZI R, SAETTA A, et al. Analyses of masonry vaults: a macro approach based on three-dimensional damage model[J]. Journal of Structural Engineering, 2002, 128(5): 646-654.
[66]PODESTÀ S. A damage model for the analysis of the seismic response of monumental buildings[J]. Journal of Earthquake Engineering, 2005, 9(3): 419-444.
[67]MALENA M, PORTIOLI F, GAGLIARDO R, et al. Collapse mechanism analysis of historic masonry structures subjected to lateral loads: a comparison between continuous and discrete models[J]. Computers & Structures, 2019, 220: 14-31.
[68]VALENTE M, MILANI G. Damage assessment and partial failure mechanisms activation of historical masonry churches under seismic actions: three case studies in Mantua[J]. Engineering Failure Analysis, 2018, 92: 495-519.
[69]RESTA M, FIORE A, MONACO P. Non-linear finite element analysis of masonry towers by adopting the damage plasticity constitutive model[J]. Advances in Structural Engineering, 2013, 16(5): 791-803.
[70]PANT B, MACORINI L, IZZUDDIN B A. A two-level macroscale continuum description with embedded discontinuities for nonlinear analysis of brick/block masonry[J]. Computational Mechanics, 2022, 69(3): 865-890.
[71]CARPINTERI A, LACIDOGNA G, MANUELLO A. The b-value analysis for the stability investigation of the ancient Athena Temple in Syracuse[J]. Strain, 2011, 47(S1): 243-253.
[72]VERSTRYNGE E, GEMERT D V. Creep failure of two historical masonry towers: analysis from material to structure[J]. International Journal of Masonry Research and Innovation, 2018, 3(1): 50.
[73]D'AYALA D, FODDE E. Structural analysis of historic construction: preserving safety and significance[M].Boca Raton: CRC Press, 2008.
[74]SÁNCHEZ-BEITIA S, LUENGAS-CARREÑO D, CRESPO DE ANTONIO M. The presence of secondary creep in historic masonry constructions: a hidden problem[J]. Engineering Failure Analysis, 2017, 82: 315-326.
[75]ANZANI A, BINDA L, ROBERTI G M. Experimental researches into long-term behaviour of historical masonry[J]. WIT Transactions on State-of-the-art in Science and Engineering, 2007, 11: 29-55.
[76]ANZANI A, GARAVAGLIA E, BINDA L. Long-term damage of historic masonry: a probabilistic model[J]. Construction and Building Materials, 2009, 23(2): 713-724.
[77]GARAVAGLIA E, ANZANI A, BINDA L. Probabilistic model for the assessment of historic buildings under permanent loading[J]. Journal of Materials in Civil Engineering, 2006, 18(6): 858-867.
[78]ANZANI A, BINDA L, ROBERTI G M. The effect of heavy persistent actions into the behaviour of ancient masonry[J]. Materials and Structures, 2000, 33(4): 251-261.
[1]屈文俊,郭 朋,崔 巍.预制板上粘贴钢板条桁架对砌体教学楼抗震性能的影响[J].建筑科学与工程学报,2013,30(04):14.
QU Wen-jun,GUO Peng,CUI Wei.Influences of Sticking Steel Strips Under Precast RC Slabs on Seismic Performance of Masonry Teaching Building[J].Journal of Architecture and Civil Engineering,2013,30(05):14.
[2]屈文俊,马瑞嘉,崔 巍.预制板现浇混凝土叠合层加固砌体教学楼的抗震性能分析[J].建筑科学与工程学报,2013,30(03):7.
QU Wen-jun,MA Rui-jia,CUI Wei.Analysis of Seismic Behavior of Masonry Teaching Buildings Strengthened by Cast-in-place RC Layer on Precast RC Slabs[J].Journal of Architecture and Civil Engineering,2013,30(05):7.
[3]谭晓晶,吴斌,辛文杰,等.林甸县农村砌体房屋抗震性能调查与分析[J].建筑科学与工程学报,2012,29(02):36.
TAN Xiao-jing,WU Bin,XIN Wen-jie,et al.Investigation and Analysis of Seismic Behavior of Masonry
Buildings in Rural Areas Located in Lindian County[J].Journal of Architecture and Civil Engineering,2012,29(05):36.
[4]吴建营,李杰.混凝土弹塑性损伤本构关系统一模型[J].建筑科学与工程学报,2005,22(04):15.
WU Jian-ying,LI Jie.Unified elasto-plastic damage constitutive relations model for concrete[J].Journal of Architecture and Civil Engineering,2005,22(05):15.
[5]李忠友,姚志华,胡 柏.基于能量耗散特征的脆性岩土材料三轴压缩损伤模型[J].建筑科学与工程学报,2019,36(04):80.
LI Zhong-you,YAO Zhi-hua,HU Bai.Triaxial Compression Damage Model of Brittle Geotechnical Materials
Based on Energy Dissipation Characteristics[J].Journal of Architecture and Civil Engineering,2019,36(05):80.
[6]郭 猛,李薇薇,贾英杰.复杂立面形状砌体墙抗震性能试验[J].建筑科学与工程学报,2021,38(05):38.[doi:10.19815/j.jace.2021.04007]
GUO Meng,LI Wei-wei,JIA Ying-jie.Experiment on Seismic Performance of Masonry Walls with Complex Facade Shapes[J].Journal of Architecture and Civil Engineering,2021,38(05):38.[doi:10.19815/j.jace.2021.04007]
[7]郭 猛,范旺生,孙 静.转动变形机制下砌体墙的等效抗侧刚度计算模型[J].建筑科学与工程学报,2022,39(06):102.[doi:10.19815/j.jace.2021.07041]
GUO Meng,FAN Wang-sheng,SUN Jing.Calculation Model of Equivalent Lateral Stiffness of Masonry Wall Under Rotational Deformation Mechanism[J].Journal of Architecture and Civil Engineering,2022,39(05):102.[doi:10.19815/j.jace.2021.07041]
[8]李 超,郭 猛.小开洞砌体墙抗震性能研究[J].建筑科学与工程学报,2023,40(03):92.[doi:10.19815/j.jace.2022.03008]
LI Chao,GUO Meng.Investigation on seismic behavior of masonry walls with small openings[J].Journal of Architecture and Civil Engineering,2023,40(05):92.[doi:10.19815/j.jace.2022.03008]
[9]付 鹏,亓宪寅,王胜伟,等.高温作用后层状复合岩石单轴压缩试验损伤机理研究[J].建筑科学与工程学报,2024,41(04):139.[doi:10.19815/j.jace.2022.08002]
FU Peng,QI Xianyin,WANG Shengwei,et al.Study on damage law of layered composite rock under uniaxial compression test after high temperature[J].Journal of Architecture and Civil Engineering,2024,41(05):139.[doi:10.19815/j.jace.2022.08002]
[10]屈俊童,浦钧翔,王文彬,等.水泥-磷石膏固化泥炭质土的力学性能及本构模拟[J].建筑科学与工程学报,2025,42(05):181.[doi:10.19815/j.jace.2024.05011]
QU Juntong,PU Junxiang,WANG Wenbin,et al.Mechanical properties and constitutive simulation of cement-phosphogypsum stabilized peaty soil[J].Journal of Architecture and Civil Engineering,2025,42(05):181.[doi:10.19815/j.jace.2024.05011]