|本期目录/Table of Contents|

[1]年油油,黄华,丁航,等.车辆撞击下钢拱塔斜拉桥力学性能及损伤分析[J].建筑科学与工程学报,2025,42(06):111-123.[doi:10.19815/j.jace.2024.08044]
 NIAN Youyou,HUANG Hua,DING Hang,et al.Mechanical properties and damage analysis of steel arch tower cable-stayed bridge under vehicle impact[J].Journal of Architecture and Civil Engineering,2025,42(06):111-123.[doi:10.19815/j.jace.2024.08044]
点击复制

车辆撞击下钢拱塔斜拉桥力学性能及损伤分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年06期
页码:
111-123
栏目:
桥隧工程
出版日期:
2025-11-25

文章信息/Info

Title:
Mechanical properties and damage analysis of steel arch tower cable-stayed bridge under vehicle impact
文章编号:
1673-2049(2025)06-0111-13
作者:
年油油1,2,黄华1,丁航3,聂蒙朝3
(1. 西安工业大学 建筑工程学院,陕西 西安 710021; 2. 西安电子科技大学 基本建设处,陕西 西安 710071; 3. 长安大学 建筑工程学院,陕西 西安 710061)
Author(s):
NIAN Youyou1,2, HUANG Hua1, DING Hang3, NIE Mengzhao3
(1. School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an 710021, Shaanxi, China; 2. Office of Infrastructure, Xidian University, Xi'an 710071, Shaanxi, China; 3. School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China)
关键词:
桥梁工程 V形双钢拱塔斜拉桥 车辆撞击 力学性能 有限元模拟
Keywords:
bridge engineering V-shaped double steel arch tower cable-stayed bridge vehicle impact mechanical property finite element simulation
分类号:
U443
DOI:
10.19815/j.jace.2024.08044
文献标志码:
A
摘要:
为了分析双钢拱塔斜拉桥结构在车辆撞击下的受力性能,结合试验和ANSYS/LS-DYNA建立实际车辆全尺寸精细化模型,对撞击部位进行多尺度精细化处理,研究不同吨位车辆撞击不同位置时的局部损伤破坏特征和碰撞力时程曲线; 采用MIDAS Civil进行桥梁结构整体建模,分析整体结构在车辆撞击下的动力反应,并定义了体积损伤率这一指标来反映钢拱塔的损坏程度。结果表明:撞击力的强度与车辆结构的刚性分布密切相关,车辆对桥梁实际撞击力远超规范公式预测值; 钢拱塔的外壳和内部填充混凝土协同变形,提高了钢拱塔刚度,有效降低了撞击过程中的侵入深度,钢拱塔在抵抗车辆撞击方面具有优异性能; 随着车辆质量和速度增加,钢拱塔的体积损伤率增加,但增长速度逐渐减缓; 塔梁结合处等薄弱部位在车辆撞击下受力显著,撞击点附近的区域受影响尤其显著,靠近撞击点的斜拉索受影响最大; 钢拱塔在车辆撞击下有明显的横向位移,特别是腰部区域出现最大变形。
Abstract:
In order to analyze the force performance of the double steel arch tower cable-stayed bridge structure under vehicle impact, a full-size refinement model of the actual vehicle was established by combining tests and ANSYS/LS-DYNA. Multi-scale refinement was carried out for the impact site to study the local damage characteristics and the collision force time course curve for different tonnages of vehicles at different impact locations. MIDAS Civil was used to model the bridge structure as a whole, analyze the dynamic response of the entire structure under vehicle impact, and define the volumetric damage rate indicator to reflect the damage degree of the steel arch tower. The results show that the intensity of the impact force is closely related to the rigidity distribution of the vehicle structure. The actual impact force of the vehicle on the bridge is much higher than the predicted value of the standard formula. The shell of the steel arch tower and the internal filler concrete deform collaboratively, which improves the stiffness of the steel arch tower and effectively reduces the depth of intrusion during the impact. The steel arch tower performs excellently in resisting vehicle impacts. The volumetric damage rate of the steel arch tower increases with the mass and speed of the vehicle, but the growth rate gradually slows down. Weak parts such as the tower-beam combination are significantly stressed under vehicle impact, and the area near the impact point is particularly affected. The diagonal cable close to the impact point is affected the most. The steel arch tower has obvious transverse displacement under vehicle impact, especially in the waist area, which has the largest deformation.

参考文献/References:

[1] 李晓龙.车船对桥墩撞击的研究[D].北京:北京交通大学,2011.
LI Xiaolong. Analysis of impact on bridge piers by vehicles and vessels[D]. Beijing: Beijing Jiaotong University, 2011.
[2]吉伯海,傅中秋.近年国内桥梁倒塌事故原因分析[J].土木工程学报,2010,43(增1):495-498.
JI Bohai, FU Zhongqiu. Analysis of Chinese bridge collapse accident causes in recent years[J]. China Civil Engineering Journal, 2010, 43(S1): 495-498.
[3]公路斜拉桥设计规范:JTG/T 3365-01—2020[S].北京:人民交通出版社,2020.
Specifications for design of highway cable-stayed bridge: JTG/T 3365-01—2020[S]. Beijing: China Communications Press, 2020.
[4]AL-THAIRY H, WANG Y C. An assessment of the current Eurocode 1 design methods for building structure steel columns under vehicle impact[J]. Journal of Constructional Steel Research, 2013, 88:164-171.
[5]崔堃鹏,夏 禾,夏超逸,等.汽车撞击桥墩瞬态撞击力的等效静力计算[J].振动与冲击,2014,33(4):48-53,69.
CUI Kunpeng, XIA He, XIA Chaoyi, et al. Equivalent static force calculation methods for transient impact force of a vehicle in collision with piers[J]. Journal of Vibration and Shock, 2014, 33(4): 48-53, 69.
[6]崔堃鹏,夏超逸,刘炎海,等.高速铁路桥墩汽车撞击力的数值模拟与特性分析[J].桥梁建设,2013,43(6):57-63.
CUI Kunpeng, XIA Chaoyi, LIU Yanhai, et al. Numerical simulation and characteristic analysis of vehicle collision forces in high-speed railway bridge pier[J]. Bridge Construction, 2013, 43(6): 57-63.
[7]WEE T, YIN H, MAHARUN M, et al. Research on HGV collisions with concrete bridge piers[J]. Applied Mechanics and Materials, 2014, 567: 648-653.
[8]王君杰,刘慧杰,尹海蛟.驳船-圆柱碰撞的修正半波正弦荷载模型[J].中国公路学报,2018,31(8):82-93.
WANG Junjie, LIU Huijie, YIN Haijiao. Modified half-wave sine load model for barge-cylinder collision[J]. China Journal of Highway and Transport, 2018, 31(8): 82-93.
[9]TSANG H H, LAM N T K. Collapse of reinforced concrete column by vehicle impact[J]. Computer-aided Civil and Infrastructure Engineering, 2008, 23(6): 427-436.
[10]尹 越,黄逸群,王秀泉.车辆撞击钢结构人行天桥有限元分析[J].天津大学学报(自然科学与工程技术版),2016,49(增1):129-136.
YIN Yue, HUANG Yiqun, WANG Xiuquan. Finite element analysis of vehicle impact on steel pedestrian overpass[J]. Journal of Tianjin University(Science and Technology), 2016, 49(S1): 129-136.
[11]陆新征,卢 啸,张炎圣,等.超高车辆-桥梁上部结构撞击力的工程计算方法[J].中国公路学报,2011,24(2):49-55.
LU Xinzheng, LU Xiao, ZHANG Yansheng, et al. Engineering calculation method for collision force between over-height truck and bridge superstructure[J]. China Journal of Highway and Transport, 2011, 24(2): 49-55.
[12]GHOLIPOUR G, ZHANG C W, MOUSAVI A A. Nonlinear failure analysis of bridge pier subjected to vessel impact combined with blast loads[J]. Ocean Engineering, 2021, 234: 109209.
[13]FANG C, YOSEF T Y, LINZELL D G, et al. Computational modeling and dynamic response of highway bridge columns subjected to combined vehicle collision and air blast[J]. Engineering Failure Analysis, 2021, 125: 105389.
[14]薛淑友,郝 洪,郝逸飞.预制混凝土节段拼装桥墩抗车撞性能数值研究[J].工程力学,2023,40(7):59-74.
XUE Shuyou, HAO Hong, HAO Yifei. Numerical investigation for impact performance of precast concrete segmental piers subjected to vehicle collision[J]. Engineering Mechanics, 2023, 40(7): 59-74.
[15]张新晨,方 海,张 喆,等.新型再生发泡混凝土墙式护栏防车撞试验与模拟[J].中国公路学报,2024,37(5):122-137.
ZHANG Xinchen, FANG Hai, ZHANG Zhe, et al. Experimental and numerical investigation of the anti-collision performance of a novel recycled foamed concrete guardrail[J]. China Journal of Highway and Transport, 2024, 37(5): 122-137.
[16]黄 华,白 豪,周文杰,等.拉索损伤时V形双钢拱塔斜拉桥动力特性及抗震性能分析[J].长安大学学报(自然科学版),2021,41(2):114-124.
HUANG Hua, BAI Hao, ZHOU Wenjie, et al. Analysis of dynamic characteristics and seismic performance of V-shape double steel arch cable-stayed bridge with cable damage[J]. Journal of Chang'an University(Natural Science Edition), 2021, 41(2): 114-124.
[17]黄 华,郭 朋,吴先兵,等.断索对双钢拱塔斜拉桥力学性能的影响[J].公路交通科技,2020,37(4):62-71,117.
HUANG Hua, GUO Peng, WU Xianbing, et al. Influence of cable breaking on mechanical properties of double-steel-arch-pylon cable-stayed bridge[J]. Journal of Highway and Transportation Research and Development, 2020, 37(4): 62-71, 117.
[18]邬晓光,殷任宏,李 渊.V形双拱独塔斜拉桥结构特性[J].沈阳大学学报(自然科学版),2018,30(1):43-47,58.
WU Xiaoguang, YIN Renhong, LI Yuan. Structure characteristics of cable-stayed bridge with V-shaped double arch single pylon[J]. Journal of Shenyang University(Natural Science), 2018, 30(1): 43-47,58.
[19]城市桥梁抗震设计规范:CJJ 166—2011[S].北京:中国建筑工业出版社,2012.
Code for seismic design of urban bridges: CJJ 166—2011[S]. Beijing: China Architecture & Building Press, 2012.
[20]吴佰建,李兆霞,汤可可.大型土木结构多尺度模拟与损伤分析:从材料多尺度力学到结构多尺度力学[J].力学进展,2007,37(3):321-336.
WU Baijian, LI Zhaoxia, TANG Keke. Multi-scale modeling and damage analyses of large civil structure:multi-scale mechanics from material to structure[J]. Advances in Mechanics, 2007, 37(3): 321-336.
[21]CHEN L, WU H, FANG Q, et al. Full-scale experimental study of a reinforced concrete bridge pier under truck collision[J].Journal of Bridge Engineering, 2021, 26(8): 05021008.
[22]YAN X D, RADWAN E, MANNILA K K, et al. Investigation of truck-involved angle crashes based on GES and FARS crash databases[J]. The Open Transportation Journal, 2009, 3(1): 52-62.
[23]公路桥涵设计通用规范:JTG D60—2015[S].北京:人民交通出版社,2015.
General specifications for design of highway bridges and culverts: JTG D60—2015[S]. Beijing: China Communications Press, 2015.
[24]公路桥梁抗撞设计规范:JTG/T 3360-02—2020[S].北京:人民交通出版社,2020.
Specifications for collision design of highway bridges: JTG/T 3360-02—2020[S]. Beijing: China Communications Press, 2020.

相似文献/References:

[1]刘荣桂,刘德鑫,延永东,等.CFRP筋复合型锚具锚固性能研究[J].建筑科学与工程学报,2013,30(02):9.
 LIU Rong-gui,LIU De-xin,YAN Yong-dong.[J].Journal of Architecture and Civil Engineering,2013,30(06):9.
[2].《建筑科学与工程学报》征稿简则[J].建筑科学与工程学报,2013,30(02):127.
[3]李加武,黄森华,王新.开口断面斜拉桥主梁动力特性的有限元简化计算[J].建筑科学与工程学报,2013,30(04):59.
 LI Jia-wu,HUANG Sen-hua,WANG Xin.Finite Element Simplified Computation for Dynamic Characteristics of Cable-stayed Bridge Girder with Opening Section[J].Journal of Architecture and Civil Engineering,2013,30(06):59.
[4]任 伟,盖轶婷,王 锦.混凝土自锚式悬索桥过程控制状态分析[J].建筑科学与工程学报,2014,31(03):45.
 REN Wei,GAI Yi-ting,WANG Jin.Analysis of Process Control State About Concrete Selfanchored Suspension Bridge[J].Journal of Architecture and Civil Engineering,2014,31(06):45.
[5]李加武,周 琴,黄森华.简支梁桥铅芯橡胶支座减震特性研究[J].建筑科学与工程学报,2014,31(03):124.
 LIU Xin-hua,LI Jia-wu,ZHOU Qin,et al.Research on Seismic Isolation Characteristics of LRB for Simply Supported Beam Bridge[J].Journal of Architecture and Civil Engineering,2014,31(06):124.
[6]韦建刚,黄 蕾,李佩元,等.旧空心板简支梁桥的连续化改造加固研究[J].建筑科学与工程学报,2014,31(04):103.
 WEI Jian-gang,HUANG Lei,LI Pei-yuan,et al.Research on Continuous Transformation and Reinforcement for Old Simply Supported Hollow Slab Bridge[J].Journal of Architecture and Civil Engineering,2014,31(06):103.
[7]周 帅,曾永平,杨国静,等.桥梁箱型吊杆涡振与驰振耦合振动的数值模拟[J].建筑科学与工程学报,2015,32(02):84.
 ZHOU Shuai,ZENG Yong-ping,YANG Guo-jing,et al.Numerical Simulation on Coupled Vibration of Vortex-induced Vibration and Galloping Vibration for Box Hangers of Bridges[J].Journal of Architecture and Civil Engineering,2015,32(06):84.
[8]赵士良,韩万水,鲁永飞,等.重载交通条件下装配式RC板桥抗裂性分析[J].建筑科学与工程学报,2015,32(04):73.
 ZHAO Shi-liang,HAN Wan-shui,LU Yong-fei,et al.Crack Resistance Analysis on Prefabricated RC Slab Bridge Under Heavy Traffic[J].Journal of Architecture and Civil Engineering,2015,32(06):73.
[9]贡金鑫,江力财,赵尚传,等.桥梁拉吊索用不锈钢钢丝腐蚀性能及斜拉索时变可靠度研究[J].建筑科学与工程学报,2015,32(05):8.
 GONG Jin-xin,JIANG Li-cai,ZHAO Shang-chuan,et al.Study on Corrosion Properties of Stainless Steel Wire for Cable Use and Time-variant Reliability of Stay Cable of Bridge[J].Journal of Architecture and Civil Engineering,2015,32(06):8.
[10]李立峰,刘守苗,吴文朋.氯离子侵蚀效应对RC桥墩抗震性能的影响[J].建筑科学与工程学报,2015,32(05):56.
 LI Li-feng,LIU Shou-miao,WU Wen-peng.Influence of Chloride Ion Corrosion on Seismic Performance of Reinforced Concrete Piers[J].Journal of Architecture and Civil Engineering,2015,32(06):56.

备注/Memo

备注/Memo:
收稿日期:2024-08-11
基金项目:国家自然科学基金项目(51978060); 陕西省杰出青年科学基金项目(2023-JC-JQ-47); 陕西省国际科技合作计划重点项目(2024GH-ZDXM-18); 陕西高校青年创新团队项目(2023); 西安市科技计划项目(23GXFW0035)
通信作者:黄 华(1979-),男,工学博士,教授,博士生导师,E-mail:huanghua23247@163.com。
更新日期/Last Update: 2025-11-25