|本期目录/Table of Contents|

[1]白 桦,叶 茂,杨世全,等.方形结构风荷载Jensen数效应研究[J].建筑科学与工程学报,2023,40(02):105-115.[doi:10.19815/j.jace.2021.09045]
 BAI Hua,YE Mao,YANG Shiquan,et al.Study on Jensen number effect of wind load on square structure[J].Journal of Architecture and Civil Engineering,2023,40(02):105-115.[doi:10.19815/j.jace.2021.09045]
点击复制

方形结构风荷载Jensen数效应研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年02期
页码:
105-115
栏目:
建筑结构
出版日期:
2023-03-30

文章信息/Info

Title:
Study on Jensen number effect of wind load on square structure
文章编号:
1673-2049(2023)02-0105-11
作者:
白 桦,叶 茂,杨世全,刘健新
(长安大学 公路学院,陕西 西安 710064)
Author(s):
BAI Hua, YE Mao, YANG Shiquan, LIU Jianxin
(School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
方形结构 风洞试验 Jensen数 风荷载 相关性
Keywords:
square structure wind tunnel test Jensen number wind load correlation
分类号:
TU317.1
DOI:
10.19815/j.jace.2021.09045
文献标志码:
A
摘要:
为了解试验模拟的地表粗糙度偏差对方形结构风荷载的影响,在风洞中模拟不同缩尺比的A、B两类粗糙度指数风场,研究Jensen数分别为1 200、6 000时结构风荷载的Jensen数效应。结果表明:Jensen数变化对平均风荷载影响很小,对脉动风荷载影响较大; Jensen数由6 000减小到1 200时,顺风向、横风向、扭矩脉动风荷载增大幅度约为200%~250%; Jensen数减小会使风荷载功率谱低频段能量呈小幅增大趋势,高频段能量呈小幅减小趋势; 当来流与方形结构的直线边存在一定夹角时,Jensen数变化对各类型风荷载相关性影响变小; Jensen数增大会使各层间顺风向、横风向与扭矩风荷载相关性减小; Jensen数由1 200增大为6 000时,对扭矩风荷载相关性影响最大,降幅为63%,横风向风荷载相关性最大降幅为40%,顺风向风荷载相关性最大降幅为15%; 增大Jensen数会使顺风向风荷载相干函数与Davenport指数衰减形式吻合的频率范围增大,高频部分的竖向相干函数减小; 横风向风荷载与扭矩风荷载竖向相干函数更符合Davenport指数衰减形式。
Abstract:
In order to understand the effect of the deviation of surface roughness on square structure wind load, two kinds of roughness index wind fields of A and B with different scale ratios were simulated in wind tunnel, and the Jensen number effect on the structural wind load when the Jensen number was 1 200 and 6 000 respectively was studied. The results show that the variation of the Jensen number has little influence on the mean wind load, while it has a greater influence on the fluctuating wind load. When the Jensen number is reduced from 6 000 to 1 200, the increase range of along-wind, cross-wind and torsional wind load is 200%-250%. With the decrease of the Jensen number, the energy of the wind load power spectrum increases slightly in low frequency, and decreases slightly in high frequency. The influence of the change of the Jensen number on the various types of wind load is relatively small, when there is an intersection angle between the flow direction and the straight edge of the square structure. The increase of Jensen number will reduce the correlation between along-wind direction, cross-wind direction and torsional wind load. The increase of the Jensen number from 1 200 to 6 000 imposes great effects on torsional wind load, which has a decrease of 63%, while the maximum decrease in across-wind load correlation is 40% and the maximum decrease in along-wind load is 15%. With the increase of the Jensen number, the frequency range of the along-wind load coherence function with the Davenport exponential attenuation increases, while vertical coherence function decreases in high frequency part.The vertical coherence function of cross-wind load and torsional wind load is more consistent with the Davenport exponential attenuation form.

参考文献/References:

[1] COOK N J.Jensen number; a proposal[J].Journal of Wind Engineering and Industrial Aerodynamics,1986,22(1):95-96.
[2]LAROSEA G L,FRANCK N.Early wind engineering experiments in Denmark[J].Journal of Wind Engineering and Industrial Aerodynamics,1997,72:493-499.
[3]SIMIU E,YEO D.Wind effects on structures:modern structural design for wind[M].Chichester:John Wiley & Sons,Ltd,2019.
[4]ROY R J,HOLMES J D.The effects of scale distortion on total wind loads on a low rise building model[J].Journal of Wind Engineering and Industrial Aerodynamics,1988,29(1/2/3):273-282.
[5]HOLMES J D,CARPENTER P.The effect of Jensen number variations on the wind loads on a low-rise building[J].Journal of Wind Engineering and Industrial Aerodynamics,1990,36:1279-1288.
[6]STATHOPOULOS T,SURRY D.Scale effects in wind tunnel testing of low buildings[J].Journal of Wind Engineering and Industrial Aerodynamics,1983,13(1/2/3):313-326.
[7]MELBOURNE W H.Turbulence effects on maximum surface pressures — a mechanism and possibility of reduction[J].Wind Engineering,1980,1:541-551.
[8]HUNT A.Wind-tunnel measurements of surface pressures on cubic building models at several scales[J].Journal of Wind Engineering and Industrial Aerodynamics,1982,10(2):137-163.
[9]RICHARDS P J,HOXEY R P,SHORT L J.Wind pressures on a 6 m cube[J].Journal of Wind Engineering and Industrial Aerodynamics,2001,89(14/15):1553-1564.
[10]HOLDO A E,HOUGHTON E L,BHINDER F S.Some effects due to variations in turbulence integral length scales on the pressure distribution on wind-tunnel models of low-rise buildings[J].Journal of Wind Engineering and Industrial Aerodynamics,1982,10(1):103-115.
[11]卢占斌,魏庆鼎.网格湍流CAARC模型风洞实验[J].空气动力学学报,2001,19(1):16-23.
LU Zhanbin,WEI Qingding.An experiment on a CAARC model in grid turbulent flow[J].Acta Aerodynamica Sinica,2001,19(1):16-23.
[12]白 桦.影响桥梁及建筑结构风洞试验结果若干因素研究[D].西安:长安大学,2012.
BAI Hua.Research on the effect of several factors on the wind tunnel test results of bridge and building structure[D].Xi'an:Chang'an University,2012.
[13]唐宾芳.大跨双坡屋盖风荷载特性及风压预测研究[D].长沙:长沙理工大学,2020.
TANG Binfang.Study on wind load characteristics of long-span gable roof and prediction of wind pressure[D].Changsha:Changsha University of Science & Technology,2020.
[14]HE X H,ZUO T H,ZOU Y F,et al.Experimental study on aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds[J].Journal of Central South University,2020,27(8):2465-2478.
[15]MA C M,DUAN Q S,LI Q S,et al.Buffeting forces on static trains on a truss girder in turbulent crosswinds[J].Journal of Bridge Engineering,2018,23(11):04018086.
[16]周子祺.桥梁主梁涡激力分布及其紊流影响效应研究[D].长沙:湖南大学,2020.
ZHOU Ziqi.The research on vortex-induced force and turbulence effect of bridge girder[D].Changsha:Hunan University,2020.
[17]李春光,张 记,陈政清.紊流积分尺度对桥梁颤振导数影响的试验研究[J].公路交通科技,2016,33(11):69-75.
LI Chunguang,ZHANG Ji,CHEN Zhengqing.Experimental study on influence of turbulence integral scale on flutter derivatives of bridge[J].Journal of Highway and Transportation Research and Development,2016,33(11):69-75.
[18]胡尚瑜,李秋胜,张 明.低矮建筑标模风荷载的主动湍流模拟试验研究[J].实验流体力学,2020,34(4):22-29.
HU Shangyu,LI Qiusheng,ZHANG Ming.Active turbulence simulation study of wind loads on standard low-rise building[J].Journal of Experiments in Fluid Mechanics,2020,34(4):22-29.
[19]裴 城,马存明,王明志,等.紊流积分尺度对典型桥梁断面静力系数影响规律的风洞试验研究[J].土木工程学报,2020,53(1):64-72.
PEI Cheng,MA Cunming,WANG Mingzhi,et al.Wind tunnel tests on the influence of turbulent integral scale on aerostatic coefficients of typical bridge section[J].China Civil Engineering Journal,2020,53(1):64-72.
[20]李春光,周林威,韩 艳,等.基于风洞试验的不同坡度多跨锯齿屋面风压特性研究[J].实验力学,2021,36(2):259-268.
LI Chunguang,ZHOU Linwei,HAN Yan,et al.Wind pressure characteristics of multi-span saw-tooth roof with different slopes based on wind tunnel test[J].Journal of Experimental Mechanics,2021,36(2):259-268.
[21]邵远航,崔会敏,刘庆宽,等.某超高层建筑表面风压分布研究[J].工程力学,2021,38(增1):26-30,38.
SHAO Yuanhang,CUI Huimin,LIU Qingkuan,et al.Experimental research on wind tunnel pressure measurement of a super high-rise building[J].Engineering Mechanics,2021,38(S1):26-30,38.

相似文献/References:

[1]王松帆,汤华.超高层建筑的风振响应及等效静风荷载研究[J].建筑科学与工程学报,2010,27(01):102.
 WANG Song-fan,TANG Hua.Research on Wind Vibration Response and Equivalent Static Wind Loads of Super High-rise Buildings[J].Journal of Architecture and Civil Engineering,2010,27(02):102.
[2]董锐,赵林,葛耀君.大型冷却塔人字柱临时期最优拆除位置分析[J].建筑科学与工程学报,2011,28(03):56.
 DONG Rui,ZHAO Lin,GE Yao-jun.Analysis of Optimal Removing Location of Diagonal Columns in Large Cooling Towers' Temporary Period[J].Journal of Architecture and Civil Engineering,2011,28(02):56.
[3]汤华,王松帆.基于风洞试验的高层建筑风荷载研究及抗风设计[J].建筑科学与工程学报,2012,29(02):96.
 TANG Hua,WANG Song-fan.Wind Load Research and Wind-resistant Design of High-rise Buildings Based on Wind Tunnel Test[J].Journal of Architecture and Civil Engineering,2012,29(02):96.
[4]柯世堂,赵林,葛耀君,等.超大型排烟冷却塔风压分布及双孔道位置优化[J].建筑科学与工程学报,2009,26(02):52.
 KE Shi-tang,ZHAO Lin,GE Yao-jun,et al.Wind Pressure Distribution and Double Holes Position Optimization for Super Large-scale Cooling Towers with Flue Gas[J].Journal of Architecture and Civil Engineering,2009,26(02):52.
[5]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展[J].建筑科学与工程学报,2006,23(01):1.
 SHEN Shi-zhao,WU Yue.Research Progress on Fluid-Solid Interaction Effect of Wind-Induced Vibration Response of Membrane Structure[J].Journal of Architecture and Civil Engineering,2006,23(02):1.
[6]沈之容,王之宏.上海北外滩酒店中庭结构风洞试验[J].建筑科学与工程学报,2006,23(04):74.
 SHEN Zhi-rong,WANG Zhi-hong.Wind Tunnel Test on Atrium Structure in Shanghai North Bund Hotel[J].Journal of Architecture and Civil Engineering,2006,23(02):74.
[7]刘健新,李加武.中国西部地区桥梁风工程研究[J].建筑科学与工程学报,2005,22(04):32.
 LIU Jian-xin,LI Jia-wu.Study of wind project of bridge in western area of China[J].Journal of Architecture and Civil Engineering,2005,22(02):32.
[8]涂 俊,王玉银,刘永健,等.大跨钢箱拱-波形钢-桁架组合梁拱桥抗风性能[J].建筑科学与工程学报,2019,36(04):47.
 TU Jun,WANG Yu-yin,LIU Yong-jian,et al.Wind Resistance of Large-span Steel Box Arch-corrugated Steel-truss Composite Beam Arch Bridge[J].Journal of Architecture and Civil Engineering,2019,36(02):47.
[9]何晗欣,张亮亮,杨鹏瑞,等.外凸式矩形高层建筑风压研究[J].建筑科学与工程学报,2019,36(06):72.
 HE Han-xin,ZHANG Liang-liang,YANG Peng-rui,et al.Study on Wind Pressure of Outer Convex Rectangular High-rise Building[J].Journal of Architecture and Civil Engineering,2019,36(02):72.
[10]李加武,朱长宇.基于表面风压分析的分离式双箱梁流场特性研究[J].建筑科学与工程学报,2021,38(02):69.[doi:10.19815/j.jace.2020.09081]
 LI Jia-wu,ZHU Chang-yu.Study on Flow Field Characteristics Around Separated Twin-box Girder Based on Surface Wind Pressure Analysis[J].Journal of Architecture and Civil Engineering,2021,38(02):69.[doi:10.19815/j.jace.2020.09081]

备注/Memo

备注/Memo:
收稿日期:2021-09-11
基金项目:国家自然科学基金项目(51978077); 陕西省自然科学基础研究计划项目(2023-JC-YB-408); 重庆市在渝院士牵头科技创新引导专项(2022YSZX-JSX0003CSTB)
作者简介:白 桦(1979-),男,工学博士,正高级工程师,E-mail:baihua9810@163.com。
更新日期/Last Update: 2023-03-20