|本期目录/Table of Contents|

[1]张海,马小平,苏三庆,等.基于机器学习的钢筋混凝土矩形柱破坏模式预测研究[J].建筑科学与工程学报,2025,42(02):48-57.[doi:10.19815/j.jace.2023.08007]
 ZHANG Hai,MA Xiaoping,SU Sanqing,et al.Research on failure mode prediction of rectangular reinforced concrete columns based on machine learning[J].Journal of Architecture and Civil Engineering,2025,42(02):48-57.[doi:10.19815/j.jace.2023.08007]
点击复制

基于机器学习的钢筋混凝土矩形柱破坏模式预测研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年02期
页码:
48-57
栏目:
建筑结构
出版日期:
2025-03-20

文章信息/Info

Title:
Research on failure mode prediction of rectangular reinforced concrete columns based on machine learning
文章编号:
1673-2049(2025)02-0048-10
作者:
张海1,2,马小平1,2,苏三庆3,王威3,蔡玉军1,2
(1. 中铁第一勘察设计院集团有限公司 极端环境岩土和隧道工程智能建养全国重点实验室,陕西 西安 710043; 2. 中铁第一勘察设计院集团有限公司 建筑与规划设计研究院/TOD研发中心,陕西 西安 710043; 3. 西安建筑科技大学 土木工程学院,陕西 西安 710055)
Author(s):
ZHANG Hai1,2, MA Xiaoping1,2, SU Sanqing3, WANG Wei3, CAI Yujun1,2
1.State Key Laboratory of Intelligent Construction and Maintenance for Extreme Geotechnical and Tunnel Engineering,China Railway First Survey and Design Institute Group Co.,Ltd.,Xi'an 710043,Shaanxi,China;2.Research Institute of Architectural&Planning Design/Research Center of Transit Oriented Development,China Railway First Survey and Design Institute Group Co.,Ltd.,Xi'an 710043,Shaanxi,China;3.School of Civil Engineering,Xi'an University of Architecture&Technology, Xi'an 710055,Shaanxi,China
关键词:
钢筋混凝土 矩形截面柱 机器学习 破坏模式预测 试验数据
Keywords:
reinforced concrete rectangular column machine learning failure mode prediction experimental data
分类号:
TU393
DOI:
10.19815/j.jace.2023.08007
文献标志码:
A
摘要:
针对传统分析方法识别效果差、数据依赖性强等问题,以既有试验数据为基础,建立矩形截面钢筋混凝土柱的数据库,应用K邻近、随机森林、支持向量机、梯度提升决策树、深度神经网络等机器学习算法,实现矩形柱破坏模式的有效识别与预测。借助机器学习强大的自学习、自适应能力,精准预测钢筋混凝土矩形柱的破坏模式,并为震后结构的维修加固与损伤评估提供依据。结果表明:机器学习技术对弯曲破坏均有良好的识别效果,随机森林和梯度提升决策树算法的准确率和回归率均达到100%,可用于矩形柱弯曲破坏模式的精准预测; 机器学习技术对于剪切破坏的识别效果差别不大,准确率均达66.67%,K邻近、支持向量机、梯度提升决策树的回归率最高,达到100%; 对于弯剪破坏模式,随机森林和梯度提升决策树的准确率最高,达到83.33%,支持向量机的预测效果较差。
Abstract:
Aiming at the problems of poor recognition effect and strong data dependence in traditional analysis methods, a database of rectangular reinforced concrete columns was established based on existing test data. The machine learning algorithms such as K-nearest neighbor, random forest, support vector machine, gradient boosting decision tree and deep neural network were applied to realize the effective recognition and prediction of failure modes for rectangular columns. By leveraging the powerful self-learning and self-adaptive ability of machine learning, the failure mode of rectangular reinforced concrete columns was accurately predicted, providing a basis for for the maintenance, reinforcement and damage assessment of post-earthquake structures. The results show that machine learning has a good recognition effect on bending failure. The accuracy and regression rate of random forest and gradient boosting decision tree are both up to 100%, and they can be used to accurately predict the bending failure mode of rectangular columns. The recognition effect of machine learning technology on shear failure is not significantly different, with an accuracy rate of 66.67%. The regression rates of the K-nearest neighbor, support vector machine, and gradient boosting decision tree are the highest, reaching 100%. For bending-shear failure mode, the accuracy of random forest and gradient boosting decision tree is the highest, reaching 83.33%, while the prediction effect of the support vector machine is poor.

参考文献/References:

[1] QI Y L, HAN X L, JI J. Failure mode classification of reinforced concrete column using Fisher method[J]. Journal of Central South University, 2013, 20(10): 2863-2869.
[2]GHEE A B, PRIESTLEY M J N, PAULAY T.Seismic shear strength of circular reinforced concrete columns[J]. ACI Structural Journal, 1989, 86(1): 45-59.
[3]KOWALSKY M J, PRIESTLEY M J N. Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions[J]. ACI Structural Journal, 2000, 97(3): 388-396.
[4]SEZEN H, MOEHLE J P. Shear strength model for lightly reinforced concrete columns[J]. Journal of Structural Engineering, 2004, 130(11): 1692-1703.
[5]MA Y, GONG J X. Probability identification of seismic failure modes of reinforced concrete columns based on experimental observations[J]. Journal of Earthquake Engineering, 2018, 22(10): 1881-1899.
[6]MANGALATHU S, JEON J S. Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques[J]. Engineering Structures, 2018, 160: 85-94.
[7]樊健生,王 琛,宋凌寒.土木工程智能计算分析研究进展与应用[J].建筑结构学报,2022,43(9):1-22.
FAN Jiansheng, WANG Chen, SONG Linghan. Research and application of intelligent computation in civil engineering[J]. Journal of Building Structures, 2022, 43(9): 1-22.
[8]鲍跃全,李 惠.人工智能时代的土木工程[J].土木工程学报,2019,52(5):1-11.
BAO Yuequan, LI Hui. Artificial intelligence for civil engineering[J]. China Civil Engineering Journal, 2019, 52(5): 1-11.
[9]马宏伟,林逸洲,聂振华.利用少量传感器信息与人工智能的桥梁结构安全监测新方法[J].建筑科学与工程学报,2018,35(5):9-23.
MA Hongwei, LIN Yizhou, NIE Zhenhua. New method of structural health monitoring based on small amount of sensor information and artificial intelligence[J]. Journal of Architecture and Civil Engineering, 2018, 35(5): 9-23.
[10]王 琛,樊健生.具有历史依赖效应的材料及结构响应预测通用深度学习模型MechPerformer[J].建筑结构学报,2022,43(8):209-219.
WANG Chen, FAN Jiansheng. A general deep learning model MechPerformer for history-dependent response prediction in structural engineering[J]. Journal of Building Structures, 2022, 43(8): 209-219.
[11]WANG J J, WANG C, FAN J S, et al. A deep learning framework for constitutive modeling based on temporal convolutional network[J]. Journal of Computational Physics, 2022, 449: 110784.
[12]徐 阳,金晓威,李 惠.土木工程智能科学与技术研究现状及展望[J].建筑结构学报,2022,43(9):23-35.
XU Yang, JIN Xiaowei, LI Hui. State-of-the-art and prospect of intelligent science and technology in civil engineering[J]. Journal of Building Structures, 2022, 43(9): 23-35.
[13]赵艳男,杜文风,王英奇,等.基于BP神经网络算法的树状结构智能找形研究[J].建筑结构学报,2022,43(4):77-85.
ZHAO Yannan, DU Wenfeng, WANG Yingqi, et al. Study on intelligent shape finding for tree-like structures based on BP neural network algorithm[J]. Journal of Building Structures, 2022, 43(4): 77-85.
[14]王 琛,何有泉,宋凌寒,等.理论辅助的弹塑性本构关系小样本深度学习[J].工程力学,2023,40(9):29-36.
WANG Chen, HE Youquan, SONG Linghan, et al. A theory-aided few-shot deep learning algorithm for elastoplastic constitutive relationships[J]. Engineering Mechanics, 2023, 40(9): 29-36.
[15]ZHANG R L, XUE X H. A predictive model for the bond strength of near-surface-mounted FRP bonded to concrete[J]. Composite Structures, 2021, 262: 113618.
[16]GAO X L, LIN C. Prediction model of the failure mode of beam-column joints using machine learning methods[J]. Engineering Failure Analysis, 2021, 120: 105072.
[17]HWANG S H, MANGALATHU S, SHIN J, et al. Machine learning-based approaches for seismic demand and collapse of ductile reinforced concrete building frames[J]. Journal of Building Engineering, 2021, 34: 101905.
[18]司 炜.基于随机森林算法的纤维喷射混凝土力学性能及抗渗性研究[J].混凝土,2022(11):36-40.
SI Wei. Research on mechanical properties and impermeability of fiber reinforced shotcrete based on random forest algorithm[J]. Concrete, 2022(11): 36-40.
[19]李启明,喻泽成,余 波,等.钢筋混凝土柱地震破坏模式判别的两阶段支持向量机方法[J].工程力学,2022,39(2):148-158.
LI Qiming, YU Zecheng, YU Bo, et al. Two-stage support vector machine method for failure mode classification of reinforced concrete columns[J]. Engineering Mechanics, 2022, 39(2): 148-158.
[20]韩小雷,吴梓楠,杨明灿,等.基于深度学习的区域RC框架结构震损评估方法研究[J].建筑结构学报,2020,41(增2):27-35.
HAN Xiaolei, WU Zinan, YANG Mingcan, et al. Research on seismic damage assessment of regional RC frame structures based on deep learning[J]. Journal of Building Structures, 2020, 41(S2): 27-35.
[21]BAO Y Q, CHEN Z C,WEI S Y, et al. The state of the art of data science and engineering in structural health monitoring[J]. Engineering, 2019, 5(2): 234-242.

相似文献/References:

[1]吴方伯,李 钧,邓利斌,等.大尺寸钢筋混凝土密肋薄腹梁抗剪性能试验[J].建筑科学与工程学报,2014,31(04):1.
 WU Fang-bo,LI Jun,DENG Li-bin,et al.Experiment on Shear Behavior of Largesize Reinforced Concrete Multiribbed Thin Web Beams[J].Journal of Architecture and Civil Engineering,2014,31(02):1.
[2]鲍文博,付亮华,陆海燕,等.钢混框剪高层结构地震能量分布及耗散研究[J].建筑科学与工程学报,2015,32(03):38.
 BAO Wen-bo,FU Liang-hua,LU Hai-yan,et al.Research on Seismic Energy Distribution and Dissipation of Reinforced Concrete Framewall Highrise Structure[J].Journal of Architecture and Civil Engineering,2015,32(02):38.
[3]延永东,姚昌建,刘荣桂,等.氯盐环境下开裂混凝土耐久性研究进展[J].建筑科学与工程学报,2015,32(04):21.
 YAN Yong-dong,YAO Chang-jian,LIU Rong-gui,et al.Research Progress on Durability of Cracked Concrete Under Chloride Environment[J].Journal of Architecture and Civil Engineering,2015,32(02):21.
[4]林 峰,黎艳翔,董 羽.CFRP加固钢筋混凝土直剪承载力试验[J].建筑科学与工程学报,2015,32(06):43.
 LIN Feng,LI Yan-xiang,DONG Yu.Experiment on Shear Transfer Capacity of Reinforced Concrete Strengthened with CFRP[J].Journal of Architecture and Civil Engineering,2015,32(02):43.
[5]吴波,乔长江.约束混凝土梁的升降温全过程轴力分析[J].建筑科学与工程学报,2010,27(01):12.
 WU Bo,QIAO Chang-jiang.Axial Force Analysis of Restrained Concrete Beams During Heating and Cooling Phases[J].Journal of Architecture and Civil Engineering,2010,27(02):12.
[6]马志林,史庆轩,王伟.钢筋混凝土联肢剪力墙弹塑性分析[J].建筑科学与工程学报,2010,27(01):60.
 MA Zhi-lin,SHI Qing-xuan,WANG Wei.Elasto-plastic Analysis of Reinforced Concrete Coupled Shear Walls[J].Journal of Architecture and Civil Engineering,2010,27(02):60.
[7]常莹莹,贡金鑫.钢筋混凝土受弯构件的延性及弯矩重分布[J].建筑科学与工程学报,2010,27(02):38.
 CHANG Ying-ying,GONG Jin-xin.Ductility and Moment Redistribution of Reinforced Concrete Flexural Members[J].Journal of Architecture and Civil Engineering,2010,27(02):38.
[8]潘元,刘伯权,邢国华,等.基于破坏准则的钢筋混凝土结构抗倒塌研究进展[J].建筑科学与工程学报,2010,27(02):51.
 PAN Yuan,LIU Bo-quan,XING Guo-hua,et al.Research Progress of Seismic Collapse Resistance of Reinforced Concrete Structures Based on Damage Criteria[J].Journal of Architecture and Civil Engineering,2010,27(02):51.
[9]屈文俊,方瑾,周国全.混凝土受弯构件受拉钢筋最小配筋率[J].建筑科学与工程学报,2011,28(01):6.
 QU Wen-jun,FANG Jin,ZHOU Guo-quan.Minimum Reinforcement Ratio of Tensile Reinforcement for Concrete Flexural Members[J].Journal of Architecture and Civil Engineering,2011,28(02):6.
[10]张云鹏,刁波,叶英华.基于Timoshenko与高阶剪切变形梁理论的RC梁极限承载力分析[J].建筑科学与工程学报,2011,28(03):67.
 ZHANG Yun-peng,DIAO Bo,YE Ying-hua.Ultimate Bearing Capacities of RC Beam Based on Timoshenko and Higher-order Shear Deformation Beam Theories[J].Journal of Architecture and Civil Engineering,2011,28(02):67.

备注/Memo

备注/Memo:
收稿日期:2023-08-04
基金项目:中铁第一勘察设计院集团有限公司科研开发项目(2022KY51ZD(ZNJC)-03,2022KY54ZD(ZNXT)-05); 中国施工企业管理协会青年创新项目(2023-B-009); 中国铁路西安局集团有限公司科学技术研究开发计划项目(Y2023034)
作者简介:张 海(1967-),男,正高级工程师,E-mail:1911681566@qq.com。
通信作者:马小平(1991-),男,工学博士,高级工程师,E-mail:maxiaopin@live.xauat.edu.cn。
Author resumes: ZHANG Hai(1967-),male,senior engineer,E-mail:1911681566@qq.com; MA Xiaoping(1991-),male,PhD,senior engineer,E-mail:maxiaopin@live.xauat.edu.cn.
更新日期/Last Update: 2025-03-20