|本期目录/Table of Contents|

[1]谭光伟,刘中存,黄 华,等.钢-混凝土混合连接预制装配式梁-柱子结构抗连续倒塌性能研究[J].建筑科学与工程学报,2025,42(03):80-91.[doi:10.19815/j.jace.2023.09002]
 TAN Guangwei,LIU Zhongcun,HUANG Hua,et al.Study on progressive collapse resistance of prefabricated beam-column substructures with hybrid steel-concrete connection[J].Journal of Architecture and Civil Engineering,2025,42(03):80-91.[doi:10.19815/j.jace.2023.09002]
点击复制

钢-混凝土混合连接预制装配式梁-柱子结构抗连续倒塌性能研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年03期
页码:
80-91
栏目:
建筑结构
出版日期:
2025-05-30

文章信息/Info

Title:
Study on progressive collapse resistance of prefabricated beam-column substructures with hybrid steel-concrete connection
文章编号:
1673-2049(2025)03-0080-12
作者:
谭光伟1,刘中存1,黄 华2,冯德成3,张海林4,潘贤林5,刘 玮6,刘彦生4,钱 凯1,7
(1. 江西中煤建设集团有限公司,江西 南昌 330038; 2. 西安工业大学 建筑工程学院,陕西 西安 710021; 3. 东南大学 土木工程学院,江苏 南京 211189; 4. 中铁城建集团南昌建设有限公司,江西 南昌 330002; 5. 中鼎国际工程有限责任公司,江西 南昌 330006; 6. 中建三局集团有限公司,湖北 武汉 430074; 7. 桂林理工大学 土木工程学院,广西 桂林 541004)
Author(s):
TAN Guangwei1, LIU Zhongcun1, HUANG Hua2, FENG Decheng3, ZHANG hailin4, PAN Xianlin5, LIU Wei6, LIU Yansheng4, QIAN Kai1,7
关键词:
钢-混凝土混合连接 装配式结构 Pushdown方法 有限元分析 抗连续倒塌
Keywords:
hybrid steel-concrete connection assembled structure Pushdown method finite element analysis progressive collapse resistance
分类号:
TU398.4
DOI:
10.19815/j.jace.2023.09002
文献标志码:
A
摘要:
为研究钢-混凝土混合连接(HSCC)预制装配式梁-柱子结构的抗连续倒塌性能,设计制作了3个1/2缩尺梁-柱子结构试件,包括1个现浇钢筋混凝土试件和2个带HSCC的预制混凝土(PC)试件,并进行拟静力Pushdown试验; 基于ANSYS/LS-DYNA进行有限元模拟与参数分析,进一步研究连接参数对结构抗连续倒塌性能的影响规律。结果表明:现浇试件破坏由梁受拉钢筋断裂主导; PC试件破坏主要由边柱-梁端连接处的螺栓受剪断裂或滑牙控制; 平齐端板混合连接(HSCC-FEP)试件的初始峰值荷载最高,但因螺栓滑牙导致悬链线机制未充分发展; 顶底腹板角钢连接(HSCC-TSWA)试件通过顶底腹板角钢和螺栓的抗剪作用显著提升了抗拉承载力,可以有效发展悬链线机制,获得更高的极限承载力; 提高螺杆强度会改变破坏模式,使破坏模式从螺栓剪断转变为梁纵筋断裂,显著增强子结构的变形能力,促进悬链线机制发展; 减小跨高比有利于小变形阶段压拱机制的发展,但会显著降低结构的延性; 预紧力为额定扭矩时结构的变形能力最优,过大的预紧力会抑制结构的变形能力,不利于悬链线机制发展。
Abstract:
In order to study the progressive collapse resistance of prefabricated beam-column substructures with hybrid steel-concrete connection(HSCC), three 1/2 scale beam-column substructure specimens were designed and fabricated, including one cast-in-place reinforced concrete specimen and two precast concrete(PC)specimens with HSCC, and a pseudo-static Pushdown load test was carried out. Based on ANSYS/LS-DYNA, finite element simulation and parametric analysis were carried out to further study the influence law of connection parameters on the progressive collapse resistance performance of the structures. The results show that the failure of the cast-in-place specimens is dominated by the fracture of beam tensile reinforcement. The failure of PC specimens is mainly controlled by the shear fracture or slippage of bolts at the side column-beam end connection. The flush end plate hybrid connection(HSCC-FEP)specimen has the highest initial peak load, but the catenary action is not fully developed due to the slippery teeth of the bolts. The top-bottom web angle connection(HSCC-TSWA)specimen significantly improves the tensile capacity through the shear effect of the top-bottom web angle and bolts, which can effectively develop the catenary action to obtain a higher ultimate load capacity. Increasing the screw strength can change the damage mode from bolt shear to beam longitudinal reinforcement fracture, which significantly enhances the deformation capacity of the substructure and promotes the development of the catenary action. Reducing the span-to-height ratio is conducive to the development of the compression arch action at the stage of small deformation, but can significantly reduce the structural ductility. The deformation capacity is optimal when the pre-tightening force is at the rated torque. Excessive pre-tightening force will inhibit the deformation capacity of the structure, which is not conducive to the catenary action development.

参考文献/References:

[1] Design of structures to resists progressive collapse: UFC 4-203-03[S]. Washington DC: Department of Defense, 2009.
[2]GSA. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects[R]. Washington DC: General Service Administration, 2003.
[3]SU Y P, TIAN Y, SONG X S. Progressive collapse resistance of axially-restrained frame beams[J]. ACI Structural Journal, 2009, 106(5): 600-607.
[4]YU J, TAN K H. Structural behavior of RC beam-column subassemblages[J]. Journal of Structural Engineering, 2013, 139(2): 233-250.
[5]王 英,顾祥林,林 峰.考虑压拱效应的钢筋混凝土双跨梁竖向承载力分析[J].建筑结构学报,2013,34(4):32-42.
WANG Ying, GU Xianglin, LIN Feng. Vertical bearing capacity of RC two-bay beams considering compressive arch action[J]. Journal of Building Structures, 2013, 34(4): 32-42.
[6]QIAN K, LI B. Experimental and analytical assessment on RC interior beam-column subassemblages for progressive collapse[J]. Journal of Performance of Constructed Facilities, 2012, 26(5): 576-589.
[7]QIAN K, LI B. Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column: experimental results[J]. Engineering Structures, 2012, 42: 154-167.
[8]YU J, TAN K H. Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages[J]. Engineering Structures, 2013, 55: 90-106.
[9]YU J, TAN K H. Special detailing techniques to improve structural resistance against progressive collapse[J]. Journal of Structural Engineering, 2014, 140(3): 04013077.
[10]安 毅,李 易,陆新征,等.干式连接装配式混凝土框架抗连续倒塌静力试验研究[J].建筑结构学报,2020,41(7):102-109.
AN Yi, LI Yi, LU Xinzheng, et al. Static progressive collapse test on precast concrete frames with dry connections[J]. Journal of Building Structures, 2020, 41(7): 102-109.
[11]钱 凯,李 治,何 畔,等.螺栓连接预制混凝土梁-板子结构抗连续倒塌机理研究[J].建筑结构学报,2020,41(1):173-180.
QIAN Kai, LI Zhi, HE Pan, et al. Progressive collapse mechanism of PC beam-slab substructure with bolted connections[J]. Journal of Building Structures, 2020, 41(1): 173-180.
[12]李 治, 翁运昊,邓小芳,等.焊接连接预制混凝土梁-板子结构抗连续倒塌性能研究[J].建筑结构学报,2020,41(10):121-128.
LI Zhi, WENG Yunhao, DENG Xiaofang, et al. Behavior of precast concrete beam-slab substructures with welded connections to resist progressive collapse[J]. Journal of Building Structures, 2020, 41(10): 121-128.
[13]QIAN K, LI B. Investigation into resilience of precast concrete floors against progressive collapse[J]. ACI Structural Journal, 2019, 116(2): 171-182.
[14]KANG S B, TAN K H. Robustness assessment of exterior precast concrete frames under column removal scenarios[J]. Journal of Structural Engineering, 2016, 142(12): 04016131.
[15]KANG S B, TAN K H. Progressive collapse resistance of precast concrete frames with discontinuous reinforcement in the joint[J]. Journal of Structural Engineering, 2017, 143(9): 04017090.
[16]KANG S B, TAN K H. Behaviour of precast concrete beam-column sub-assemblages subject to column removal[J]. Engineering Structures, 2015, 93: 85-96.
[17]ZHANG X Z, MA X, ZHANG S H, et al. Cyclic behavior of steel-precast concrete hybrid frames with high stiffness steel connections[J]. Engineering Structures, 2022, 257: 114111.
[18]LI B, KULKARNI S A, LEONG C L. Seismic performance of precast hybrid-steel concrete connections[J]. Journal of Earthquake Engineering, 2009, 13(5): 667-689.
[19]ZHANG J X, DING C L, RONG X, et al. Development and experimental investigation of hybrid precast concrete beam-column joints[J]. Engineering Structures, 2020, 219: 110922.
[20]KULKARNI S A, LI B, YIP W K. Finite element analysis of precast hybrid-steel concrete connections under cyclic loading[J]. Journal of Constructional Steel Research, 2008, 64(2): 190-201.
[21]Building code requirements for structural concrete and commentary: ACI 318-14[S]. Farmington Hills: American Concrete Institute, 2008.
[22]混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2010.
Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2010.

相似文献/References:

[1]肖建庄,沈剑羽,高 琦,等.工程弃土现状与资源化创新技术[J].建筑科学与工程学报,2020,37(04):1.[doi:10.19815/j.jace.2019.11038]
 XIAO Jian-zhuang,SHEN Jian-yu,GAO Qi,et al.Current Situation and Innovative Technology for Recycling of Engineering Waste Soil[J].Journal of Architecture and Civil Engineering,2020,37(03):1.[doi:10.19815/j.jace.2019.11038]
[2]骆维斌,乔 雄,倪伟淋,等.隧道新型装配式临时支撑结构研发及技术研究[J].建筑科学与工程学报,2022,39(05):262.[doi:10.19815/j.jace.2022.03095]
 LUO Wei-bin,QIAO Xiong,NI Wei-lin,et al.Development and Technical Research of New Prefabricated Temporary Support Structure for Tunnel[J].Journal of Architecture and Civil Engineering,2022,39(03):262.[doi:10.19815/j.jace.2022.03095]

备注/Memo

备注/Memo:
收稿日期:2023-09-05
基金项目:国家自然科学基金项目(52022024,51778153); 广西自然科学基金项目(2024JJA160348); 江西省地质局科技研究项目(2022JXDZKJKY10)
作者简介:谭光伟(1964-),男,教授级高级工程师,E-mail:375104031@qq.com。
通信作者:钱 凯(1983-),男,工学博士,教授,E-mail:qiankai@glut.edu.cn。
Author resumes: TAN Guangwei(1964-), male, professor of engineer, E-mail: 375104031@qq.com; QIAN Kai(1983-), male, PhD, professor, E-mail: qiankai@glut.edu.cn.
更新日期/Last Update: 2025-06-01