|本期目录/Table of Contents|

[1]刘永健,吴浩伟,封博文,等.车轮荷载作用下双工字钢组合梁桥横桥向 焊钉拉拔效应[J].建筑科学与工程学报,2020,37(02):1-10.[doi:10.19815/j.jace.2019.09032]
 LIU Yong-jian,WU Hao-wei,FENG Bo-wen,et al.Tensile Effect of Welding Studs in Transverse Direction of Twin-I Steel Composite Girder Bridge Under Wheel Load[J].Journal of Architecture and Civil Engineering,2020,37(02):1-10.[doi:10.19815/j.jace.2019.09032]
点击复制

车轮荷载作用下双工字钢组合梁桥横桥向 焊钉拉拔效应(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年02期
页码:
1-10
栏目:
出版日期:
2020-03-30

文章信息/Info

Title:
Tensile Effect of Welding Studs in Transverse Direction of Twin-I Steel Composite Girder Bridge Under Wheel Load
文章编号:
1673-2049(2020)02-0001-10
作者:
刘永健吴浩伟封博文张泽军陆力伟
(长安大学 公路学院,陕西 西安 710064)
Author(s):
LIU Yong-jian WU Hao-wei FENG Bo-wen ZHANG Ze-jun LU Li-wei
(School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
桥梁工程 焊钉拉拔应力 数值模拟 双工字钢组合梁桥 集束式焊钉
Keywords:
bridge engineering tensile stress of welding stud numerical simulation twin-I steel composite girder bridge group welding stud
分类号:
TU311
DOI:
10.19815/j.jace.2019.09032
文献标志码:
A
摘要:
针对双工字钢组合梁在车轮荷载作用下引起的钢混界面横桥向掀起效应导致焊钉出现拉拔应力的问题展开讨论,为分析此效应对双工字钢组合梁焊钉受力的影响从而为焊钉布置提供参考,对2×35 m双工字钢组合连续梁的焊钉拉拔应力分布规律及影响因素进行了研究。分析了6种采用不同单元类型、焊钉模拟方式、接触关系的ABAQUS有限元模型组合梁钢混界面横桥向掀起效应计算结果,通过对比已有文献中的试验结果,确定了合理的有限元模拟方法。基于此方法,分析了车轮荷载作用位置、加劲肋与横梁设置形式对焊钉拉拔应力沿纵横桥向分布的影响; 研究了横梁位置、桥面板厚度与主梁间距比、焊钉横桥向间距对焊钉拉拔应力的影响并讨论了焊钉拉拔应力对各参数的敏感性。结果表明:加劲肋限制了钢梁上翼缘随桥面板变形,导致焊钉产生明显拉拔应力; 焊钉应力沿纵桥向衰减速度很快; 设置横梁能减小双工字钢组合梁的侧向变形,导致焊钉拉拔应力大幅提高,最多能提高317.97%; 焊钉拉拔应力随着桥面板厚度与主梁间距比增大而逐渐减小,随着横梁中心线距钢梁上翼缘距离的增大呈现出先增大、后不变、最后略微减小的趋势,随焊钉横向间距增大出现先增大后减小的现象; 各参数中,桥面板厚度与主梁间距比对焊钉拉拔应力数值的影响最为显著; 根据焊钉拉拔应力分布规律及影响因素,建议应适当加密双工字钢组合梁加劲肋与横梁附近的焊钉。
Abstract:
In view of the tensile stress of the studs caused by the transverse bridge lifting effect of the steel-concrete interface of the twin-I steel composite girder under the wheel load, in order to analyze the effect on the stress of the welding studs of the twin-I steel composite girder and provide a reference for the arrangement of the welding studs, the stud tensile stress distribution law and influencing factors of 2×35 m twin-I steel composite continuous girder were studied. The calculation results of transverse bridge lifting effect of steel-concrete interface of composite girder based on six kinds of ABAQUS finite element models with different element types, weld stud simulation methods and contact relations were analyzed. By comparing the test results in the existing literature, a reasonable finite element simulation method was determined. Based on the method, the influences of wheel load position, stiffener and crossbeam setting on the distribution of stud tensile stress along the longitudinal and transverse bridge directions were analyzed. The influences of girder position, the ratio of the thickness of bridge deck to the distance between main girders, and the transverse bridge distance between welding studs on the tensile stress of welding studs were studied, and the sensitivity of tensile stress of welding studs to various parameters was discussed. The results show that the stiffener limits the deformation of the upper flange of the steel girder along with the bridge deck, which leads to the obvious tensile stress of the welding stud. The stress of welding stud decreases rapidly along the longitudinal direction of bridge. The setting of crossbeam can reduce the lateral deformation of twin-I steel composite girder, which leads to a great increase of stud tensile stress, up to 317.97%. With the increase of the ratio between the thickness of bridge deck and the distance between main girders, the tensile stress of welding stud decreases gradually. With the increase of the distance between the center line of girder and the upper flange of steel girder, the tensile stress increases firstly and then does not change, and finally decreases slightly. With the increase of the transverse distance between welding studs, the tensile stress increases firstly and then decreases. Among the parameters, the ratio of deck thickness to girder spacing has the most significant effect on the value of stud tensile stress. According to the distribution of tensile stress and its influencing factors, it is suggested that the welding studs near the stiffener and girder of twin-I steel composite girder should be properly densified.

参考文献/References:

[1] 刘永健,高诣民,周绪红,等.中小跨径钢-混凝土组合梁桥技术经济性分析[J].中国公路学报,2017,30(3):1-13.
LIU Yong-jian,GAO Yi-min,ZHOU Xu-hong,et al.Technical and Economic Analysis in Steel-concrete Composite Girder Bridge with Small and Medium Span[J].China Journal of Highway and Transport,2017,30(3):1-13.
[2]张 凯.中小跨径钢板组合梁桥快速建造技术与应用研究[D].西安:长安大学,2016.
ZHANG Kai.Research on the Accelerated Construction Technology and the Application of Composite Steel Plate Girder Bridge with Medium-small Span[D].Xi'an:Chang'an University,2016.
[3]石雪飞,马海英,刘 琛.双工字钢组合梁桥钢梁设计参数敏感性分析与优化[J].同济大学学报:自然科学版,2018,46(4):444-451.
SHI Xue-fei,MA Hai-ying,LIU Chen.Parametric Study and Optimization on Behavior of Twin-I Girder Composite Bridges[J].Journal of Tongji University:Natural Science,2018,46(4):444-451.
[4]李 慧,刘永健,张 宁,等.冻融循环作用后栓钉连接件受剪性能试验研究[J].建筑结构学报,2019,40(5):149-155.
LI Hui,LIU Yong-jian,ZHANG Ning,et al.Experimental Study on Shear Performance of Stud Shear Connector After Undergoing Freeze-thaw Cycles[J].Journal of Building Structures,2019,40(5):149-155.
[5]许 波,刘永健,朱伟庆,等.焊钉锈蚀后钢-混组合梁抗弯承载力简化计算方法[J].交通运输工程学报,2019,19(2):25-35.
XU Bo,LIU Yong-jian,ZHU Wei-qing,et al.Simplified Method of Calculating Flexural Capacity of Steel-concrete Composite Beam After Stud Corrosion[J].Journal of Traffic and Transportation Engineering,2019,19(02):25-35.
[6]封博文,刘永健,彭元诚,等.施工误差对剪力钉工作性能的影响[J].建筑科学与工程学报,2018,35(1):119-126.
FENG Bo-wen,LIU Yong-jian,PENG Yuan-cheng,et al.Influence of Construction Error on Working Performance of Shear Stud[J].Journal of Architecture and Civil Engineering,2018,35(1):119-126.
[7]JTG D64—2015,公路钢结构桥梁设计规范[S].
JTG D64—2015,Specifications for Design of Highway Steel Bridge[S]
[8]张俊平,焦兆平,黄道沸.大挑臂结合梁节段模型剪拔试验研究[J].华南理工大学学报:自然科学版,2002,30(2):64-68.
ZHANG Jun-Ping,JIAO Zhao-Ping,HUANG Dao-fei.A Study on the Long Cantilever Steel-concrete Composite Beam Segment Model Subjected to the Shear-uplifting Load[J].Journal of South China University of Technology:Natural Science Edition,2002,30(2):64-68.
[9]邵长宇.大跨度钢-混凝土连续组合箱梁桥关键技术研究[D].上海:同济大学,2006.
SHAO Chang-yu.Key Technological Study of Long Span Continuous Composite Box Girder Bridges[D].Shanghai:Tongji University,2006.
[10]侯 健,罗 扣.结合梁剪力钉布置形式研究[J].世界桥梁,2014,42(2):47-51.
HOU Jian,LUO Kou.Study of Shear Connector of Layout for Composite Girder[J].World Bridges,2014,42(2):47-51.
[11]周 辉.钢-混凝土组合箱梁界面耦合作用机理研究[D].重庆:重庆交通大学,2016.
ZHOU Hui.Study on Interfacial Coupling Mechanism of Steel Concrete Composite Box Girder[D].Chongqing:Chongqing Jiaotong University,2016.
[12]JTG D60—2015,公路桥涵设计通用规范[S].
JTG D60—2015,General Specifications for Design of Highway Bridges and Culverts[S]
[13]GB 50010—2010,混凝土结构设计规范[S].
GB 50010—2010,Code for Design of Concrete Structures[S].
[14]JTG/T D64-01—2015,公路钢混组合桥梁设计与施工规范[S].
JTG/T D64-01—2015,Specifications for Design and Construction of Highway Steel-concrete Composite Bridge[S].
[15]JIANG L,LIU Y J,FAM A.Stress Concentration Factors in Joints of Square Hollow Section(SHS)Brace and Concrete-filled SHS Chord Under Axial Tension in Brace[J].Thin-walled Structures,2018,132:79-92.
[16]JIANG L,LIU Y J,FAM A,et al.Stress Concentration Factor Parametric Formulae for Concrete-filled Rectangular Hollow Section K-joints with Perfobond Ribs[J].Journal of Constructional Steel Research,2019,160:579-597.
[17]程 高,刘永健,邱洁霖,等.PBL加劲型矩形钢管混凝土不等宽T型节点应力集中系数分析[J].建筑科学与工程学报,2014,31(4):74-79.
CHENG Gao,LIU Yong-jian,QIU Jie-lin,et al.Analysis of Stress Concentration Factor on Concrete-filled Rectangular Steel Tube T-joints Stiffened with PBL[J].Journal of Architecture and Civil Engineering,2014,31(4):74-79.
[18]马印平,刘永健,刘 江.基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J].中国公路学报,2019,32(11):51-61.
MA Yin-ping,LIU Yong-jian,LIU Jiang.Multi-scale Finite Element Model Updating of CFST Composite Truss Bridge Based on Response Surface Method[J].China Journal of Highway and Transport,2019,32(11):51-61.
[19]EI-LOBODY E,LAM D.Finite Element Analysis of Steel-concrete Composite Girders[J].Advances in Structural Engineering,2003,6(4):267-281
[20]QUEIROZ F D,VELLASCO P C G S,NETHERCOT D A.Finite Element Modelling of Composite Beams with Full and Partial Shear Connection[J].Journal of Constructional Steel Research,2007,63(4):505-521.
[21]付 果.考虑界面滑移及掀起影响的钢-混凝土组合梁试验与理论研究[D].西安:西安建筑科技大学,2008.
FU Guo.Experiments and Theoretic Research on Steel-concrete Composite Beams Considering Interface Slip and Uplift[D].Xi'an:Xi'an University of Architecture and Technology,2008.
[22]NGUYEN H T,KIM S E.Finite Element Modeling of Push-out Tests for Large Stud Shear Connectors[J].Journal of Constructional Steel Research,2009,65(10/11):1909-1920.
[23]XU C,SUGIURA K,WU C,et al.Parametrical Static Analysis on Group Studs with Typical Push-out Tests[J].Journal of Constructional Steel Research,2012,72:84-96.
[24]XU C,SUGIURA K.Parametric Push-out Analysis on Group Studs Shear Connector Under Effect of Bending-induced Concrete Cracks[J].Journal of Constructional Steel Research,2013,89:86-97.

相似文献/References:

[1]刘荣桂,刘德鑫,延永东,等.CFRP筋复合型锚具锚固性能研究[J].建筑科学与工程学报,2013,30(02):9.
 LIU Rong-gui,LIU De-xin,YAN Yong-dong.[J].Journal of Architecture and Civil Engineering,2013,30(02):9.
[2].《建筑科学与工程学报》征稿简则[J].建筑科学与工程学报,2013,30(02):127.
[3]李加武,黄森华,王新.开口断面斜拉桥主梁动力特性的有限元简化计算[J].建筑科学与工程学报,2013,30(04):59.
 LI Jia-wu,HUANG Sen-hua,WANG Xin.Finite Element Simplified Computation for Dynamic Characteristics of Cable-stayed Bridge Girder with Opening Section[J].Journal of Architecture and Civil Engineering,2013,30(02):59.
[4]任 伟,盖轶婷,王 锦.混凝土自锚式悬索桥过程控制状态分析[J].建筑科学与工程学报,2014,31(03):45.
 REN Wei,GAI Yi-ting,WANG Jin.Analysis of Process Control State About Concrete Selfanchored Suspension Bridge[J].Journal of Architecture and Civil Engineering,2014,31(02):45.
[5]李加武,周 琴,黄森华.简支梁桥铅芯橡胶支座减震特性研究[J].建筑科学与工程学报,2014,31(03):124.
 LIU Xin-hua,LI Jia-wu,ZHOU Qin,et al.Research on Seismic Isolation Characteristics of LRB for Simply Supported Beam Bridge[J].Journal of Architecture and Civil Engineering,2014,31(02):124.
[6]韦建刚,黄 蕾,李佩元,等.旧空心板简支梁桥的连续化改造加固研究[J].建筑科学与工程学报,2014,31(04):103.
 WEI Jian-gang,HUANG Lei,LI Pei-yuan,et al.Research on Continuous Transformation and Reinforcement for Old Simply Supported Hollow Slab Bridge[J].Journal of Architecture and Civil Engineering,2014,31(02):103.
[7]周 帅,曾永平,杨国静,等.桥梁箱型吊杆涡振与驰振耦合振动的数值模拟[J].建筑科学与工程学报,2015,32(02):84.
 ZHOU Shuai,ZENG Yong-ping,YANG Guo-jing,et al.Numerical Simulation on Coupled Vibration of Vortex-induced Vibration and Galloping Vibration for Box Hangers of Bridges[J].Journal of Architecture and Civil Engineering,2015,32(02):84.
[8]赵士良,韩万水,鲁永飞,等.重载交通条件下装配式RC板桥抗裂性分析[J].建筑科学与工程学报,2015,32(04):73.
 ZHAO Shi-liang,HAN Wan-shui,LU Yong-fei,et al.Crack Resistance Analysis on Prefabricated RC Slab Bridge Under Heavy Traffic[J].Journal of Architecture and Civil Engineering,2015,32(02):73.
[9]贡金鑫,江力财,赵尚传,等.桥梁拉吊索用不锈钢钢丝腐蚀性能及斜拉索时变可靠度研究[J].建筑科学与工程学报,2015,32(05):8.
 GONG Jin-xin,JIANG Li-cai,ZHAO Shang-chuan,et al.Study on Corrosion Properties of Stainless Steel Wire for Cable Use and Time-variant Reliability of Stay Cable of Bridge[J].Journal of Architecture and Civil Engineering,2015,32(02):8.
[10]李立峰,刘守苗,吴文朋.氯离子侵蚀效应对RC桥墩抗震性能的影响[J].建筑科学与工程学报,2015,32(05):56.
 LI Li-feng,LIU Shou-miao,WU Wen-peng.Influence of Chloride Ion Corrosion on Seismic Performance of Reinforced Concrete Piers[J].Journal of Architecture and Civil Engineering,2015,32(02):56.

备注/Memo

备注/Memo:
收稿日期:2019-09-18
基金项目:陕西省交通运输厅科研项目(17-14K)
作者简介:刘永健(1966-),男,江西玉山人,教授,博士研究生导师,工学博士,E-mail:lyj.chd@gmail.com。
更新日期/Last Update: 2020-04-21