|本期目录/Table of Contents|

[1]康少波,汪若云,王丹丹.UHPFRC与钢筋黏结-滑移模型[J].建筑科学与工程学报,2020,37(05):70-76.[doi:10.19815/j.jace.2020.07014]
 KANG Shao-bo,WANG Ruo-yun,WANG Dan-dan.Bond-slip Model Between Ultra-high-performance Fibre Reinforced Concrete(UHPFRC)and Reinforcement[J].Journal of Architecture and Civil Engineering,2020,37(05):70-76.[doi:10.19815/j.jace.2020.07014]
点击复制

UHPFRC与钢筋黏结-滑移模型(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年05期
页码:
70-76
栏目:
出版日期:
2020-09-30

文章信息/Info

Title:
Bond-slip Model Between Ultra-high-performance Fibre Reinforced Concrete(UHPFRC)and Reinforcement
文章编号:
1673-2049(2020)05-0070-07
作者:
康少波1,2,汪若云1,2,王丹丹1,2
1. 重庆大学 土木工程学院,重庆 400045; 2. 重庆大学 山地城镇建设与新技术教育部重点实验室,重庆 400045
Author(s):
KANG Shao-bo1,2, WANG Ruo-yun1,2, WANG Dan-dan1,2
1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China
关键词:
UHPFRC 黏结强度 分析方法 黏结-滑移模型
Keywords:
UHPFRC bond strength analysis method bond-slip model
分类号:
TU311
DOI:
10.19815/j.jace.2020.07014
文献标志码:
A
摘要:
通过对2种黏结-滑移模型(修正FIB模型和Marchand模型)进行分析计算,建立黏结区域钢筋微段的受力平衡方程和变形协调方程,研究钢筋埋置长度和荷载水平不同时模型的精确性。结果表明:当钢筋埋置长度较短时,钢筋自由端黏结应力较小,加载端黏结应力较大,Marchand模型和修正FIB模型曲线均与试验曲线较为吻合,随着荷载逐渐增大,黏结应力沿钢筋埋置长度趋于均匀分布; 当钢筋埋置长度较长时,钢筋自由端黏结应力远小于加载端黏结应力,此时Marchand模型曲线与试验曲线较为吻合,随着荷载逐渐增大,Marchand模型与修正FIB模型计算结果逐渐靠近,且与试验结果吻合良好; 埋置长度为8倍钢筋直径时,钢筋黏结应力沿埋置长度呈现出明显非线性分布,且自由端处钢筋黏结应力值接近于0。
Abstract:
Through the analysis and calculation of two kinds of bond-slip models(modified FIB model and Marchand model), the stress balance equation and deformation compatibility equation of reinforcement micro segment in bond zone were established. The accuracy of the model with different embedded lengths and load levels was studied. The results show that when the embedded length of reinforcement is short, the bond stress at the free end of the reinforcement is small, and the bond stress at the loading end is large. The Marchand model and modified FIB model are in good agreement with the test curve. With the increase of load, the bond stress tends to be uniform along the embedded length of reinforcement. When the embedded length of reinforcement is long, the bond stress at the free end of reinforcement is far less than that at the loading end, and the Marchand model is in good agreement with the test curve. With the increase of load, the calculation results of Marchand model and modified FIB model are close to each other, and they are in good agreement with the test results. When the embedded length is 8 times of the diameter of the reinforcement, the bond stress of the reinforcement along the embedded length presents an obvious nonlinear distribution, and the bond stress at the free end is close to 0.

参考文献/References:

[1] MARCHAND P,BABY F,KHADOUR A,et al.Bond Behaviour of Reinforcing Bars in UHPFRC[J].Materials and Structures,2016,49(5):1979-1995.
[2]BABY F,GRAYBEAL B,MARCHAND P,et al.UHPFRC Tensile Behavior Characterization:Inverse Analysis of Four-point Bending Test Results[J].Materials and Structures,2013,46(8):1337-1354.
[3]CEB-FIB,Fib Model Code for Concrete Structures 2010[S].
[4]RONANKI V S,AALETI S,VALENTIM D B.Experimental Investigation of Bond Behavior of Mild Steel Reinforcement in UHPC[J].Engineering Structures,2018,176:707-718.
[5]STURM A B,VISINTIN P.Local Bond Slip Behavior of Steel Reinforcing Bars Embedded in Ultra High Performance Fibre Reinforced Concrete[J].Structural Concrete,2018,20(1):108-122.
[6]GRAYBEAL B A.Material Property Characterization of Ultra-high Performance Concrete[M].Washington DC:FHWA,2006.
[7]ZHOU Z,QIAO P.Bond Behavior of Epoxy-coated Rebar in Ultra-high Performance Concrete[J].Construction and Building Materials,2018,182:406-417.
[8]ROY M,HOLLMANN C,WILLE K.Influence of Volume Fraction and Orientation of Fibers on the Pullout Behavior of Reinforcement Bar Embedded in Ultra High Performance Concrete[J].Construction and Building Materials,2017,146:582-593.
[9]YUAN J Q,GRAYBEAL B A.Bond Behavior of Reinforcing Steel in Ultra-high Performance Concrete[R].Washington DC:FHWA,2014.
[10]HOLSCHEMACGER K,WEISE D,KLOTZ S.Bond of Reinforcement in Ultra High Strength Concrete[C]//SCHMIDT M FEHLING E GEISENHANSLUKE C.Proceedings of the International Symposium on Ultra High Performance Concrete.Kassel:Kassel University Press,2004:374-388.
[11]刘旭冉.150 MPa高性能混凝土与变形钢筋粘结锚固性能试验研究[D].重庆:重庆大学,2015.
LIU Xu-ran.Experimental Research on Bonding Properties Between 150 MPa High Performance Concrete and Deformed Bars[D].Chongqing:Chongqing University,2015.
[12]FEHLING E,SCHMIDT M,WALRAVEN J,et al.Ultra-high Performance Concrete UHPC:Fundamentals,Design,Examples[M].New York:John Wiley & Sons,2015.
[13]SALEEM M A,MIRMIRAN A,XIA J,et al.Development Length of High-strength Steel Rebar in Ultrahigh Performance Concrete[J].Journal of Materials in Civil Engineering,2013,25(8):991-998.
[14]MORRIS G J.Experimental Evaluation of Local Bond Behavior of Deformed Reinforcing Bars in Concrete Structures[D].Canterbury:University of Canterbury,2015.
[15]LUCCIONI B M,LOPEZ D E,DANEIS R F.Bond-slip in Reinforced Concrete Elements[J].Journal of Structural Engineering,2005,131(11):1690-1698.
[16]DAHOU Z,SBARTAI Z M,CASTEL A,et al.Artificial Neural Network Model for Steel-concrete Bond Prediction[J].Engineering Structures,2009,31(8):1724-1733.
[17]ASLANI F,SAMALI B.Prediction the Bond Between Concrete and Reinforcing Steel at Elevated Temperatures[J].Structural Engineering & Mechanics,2013,48(5):643-660.
[18]TAVARES A J,BARBOSA M P,BITTENCOURT T N,et al.Bond Steel-concrete:Simulation Analysis of the Pull-out Tests and APULOT Using the Program ATENA[J].Revista IBRACON de Estruturase Matreriais,2014,7(1):138-157.
[19]徐有邻,沈文都,汪 洪.钢筋砼粘结锚固性能的试验研究[J].建筑结构学报,1994,15(3):26-37.
XU You-lin,SHEN Wen-du,WANG Hong.An Experimental Study of Bond-anchorage Properties of Bars in Concrete[J].Journal of Building Structures,1994,15(3):26-37.
[20]TASSIOS T P,YANNOPOULOS P J.Analytical Studies on Reinforced Concrete Members Under Cyclic Loading Based on Bond Stress-slip Relationships[J].ACI Structural Journal,1981,78(3):206-216.

相似文献/References:

[1]李红,马洪宝,吴涛,等.T型钢与混凝土黏结滑移本构关系试验[J].建筑科学与工程学报,2009,26(02):46.
 LI Hong,MA Hong-bao,WU Tao,et al.Experiment on Bond and Slip Constitutive Relation Between T-section Steel and Concrete[J].Journal of Architecture and Civil Engineering,2009,26(05):46.
[2]戴绍斌,郑小林,黄 俊,等.组合方形灌浆套筒连接性能试验[J].建筑科学与工程学报,2020,37(02):54.[doi:10.19815/j.jace.2019.01041]
 DAI Shao-bin,ZHENG Xiao-lin,HUANG Jun,et al.Experiment on Behavior of Composite Square Grout-filled Pipe Splice[J].Journal of Architecture and Civil Engineering,2020,37(05):54.[doi:10.19815/j.jace.2019.01041]
[3]单 波,佟广权,刘其元.CFRP筋与海水海砂混凝土黏结性能试验[J].建筑科学与工程学报,2020,37(05):113.[doi:10.19815/j.jace.2019.12100]
 SHAN Bo,TONG Guang-quan,LIU Qi-yuan.Experiment on Bond Performance of CFRP Bars in Seawater and Sea Sand Concrete[J].Journal of Architecture and Civil Engineering,2020,37(05):113.[doi:10.19815/j.jace.2019.12100]

备注/Memo

备注/Memo:
收稿日期:2020-07-06
基金项目:国家自然科学基金青年科学基金项目(51608068)
作者简介:康少波(1984-),男,河北石家庄人,研究员,博士研究生导师,工学博士,E-mail:kang0119@cqu.edu.cn。
更新日期/Last Update: 2020-10-15