|本期目录/Table of Contents|

[1]黄福云,何凌峰,单玉麟,等.整体桥预应力桩-土相互作用试验[J].建筑科学与工程学报,2021,38(01):31-40.[doi:10.19815/j.jace.2020.05069]
 HUANG Fu-yun,HE Ling-feng,SHAN Yu-lin,et al.Experiment on Interaction of Prestressed Pile-soil in Integral Bridge[J].Journal of Architecture and Civil Engineering,2021,38(01):31-40.[doi:10.19815/j.jace.2020.05069]
点击复制

整体桥预应力桩-土相互作用试验(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
38卷
期数:
2021年01期
页码:
31-40
栏目:
出版日期:
2021-01-20

文章信息/Info

Title:
Experiment on Interaction of Prestressed Pile-soil in Integral Bridge
文章编号:
1673-2049(2021)01-0031-10
作者:
黄福云12何凌峰12单玉麟12王静杰12张 峰12
(1. 福州大学 土木工程学院,福建 福州 350108; 2. 福州大学 福建省土木工程多灾害防治重点实验室,福建 福州 350108)
Author(s):
HUANG Fu-yun12 HE Ling-feng12 SHAN Yu-lin12 WANG Jing-jie12 ZHANG Feng12
(1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, Fujian, China; 2. Fujian Provincial Key Laboratory on Multi-disasters Prevention and Mitigation in Civil Engineering, Fuzhou University, Fuzhou 350108, Fujian, China)
关键词:
桥梁工程 预应力桩 拟静力试验 整体式桥台无缝桥 桩-土相互作用 变形能力
Keywords:
bridge engineering prestressed concrete pile pseudo-static test IAJB pile-soil interaction deformation capacity
分类号:
TU473
DOI:
10.19815/j.jace.2020.05069
文献标志码:
A
摘要:
为探究整体式桥台无缝桥(简称整体桥)预应力混凝土桩吸纳上部结构变形的能力,对3根不同预应力的缩尺模型桩PC-1~PC-3进行了拟静力试验。利用布设于桩身表面的土压力计、位移计、应变片等,研究了预应力混凝土桩的破坏模式和变形规律,并与埋深不同且未施加预应力的混凝土桩对比,进一步说明预应力对柔性桩变形能力的影响; 通过与普通混凝土桩的对比,以临界荷载、屈服荷载、峰值荷载为评价指标,分析了预应力对试验桩强度和变形的影响。结果表明:随着预应力度的增大,模型桩的破坏形态由多条裂缝向1条主要裂缝转变; PC-2和PC-3主要裂缝出现位置分别较PC-1沿埋深方向增大0.4倍和0.6倍桩径,说明预应力度的提高增大了桩-土相互作用区域,且效果较增大桩基埋深更为显著; 随着位移荷载的增加,PC-1的桩身拉、压应变分布率先出现不对称,而PC-2和PC-3在更大位移荷载时仍保持对称,通过与不同埋深未施加预应力的混凝土桩对比发现,相较于增大桩基埋深,施加预应力可以更为显著地提高桩基的弹性工作范围及桩身的整体性和抗开裂能力; 通过分析比较模型桩的桩身承载比可知,提高预应力度可改善桩身受力性能,并可更充分发挥桩周土的承载能力; PC-2,PC-3的正向临界荷载、屈服荷载以及峰值荷载相较于PC-1均有提高,屈服荷载分别较PC-1提高了17.8%和42.3%,说明预应力度可以增大混凝土桩的弹性工作范围,提高变形能力; PC-1的等效刚度退化速率较PC-2,PC-3更快,说明施加预应力可减缓混凝土桩的刚度退化; 与PHC管桩等效刚度理论计算值对比发现,PHC管桩理论计算值偏安全,可应用于PC桩的等效刚度计算。
Abstract:
In order to explore the ability of prestressed concrete piles to absorb the deformation of superstructure of integral abutment jointless bridge(IAJB), the quasi-static tests of three scaled model piles PC-1 to PC-3 with different prestress levels were carried out. The failure mode and deformation law of prestressed concrete pile were studied by means of earth pressure gauge, displacement gauge and strain gauge. Compared with the concrete piles with different buried depths and without prestress, the influence of prestress on the deformation capacity of flexible piles was further explained. Compared with ordinary concrete pile, the influence of prestress on the strength and deformation of test pile was analyzed with critical load, yield load and peak load as evaluation indexes. The results show that with the increase of prestress level, the failure mode of model pile changes from multiple cracks to one main crack. The location of main cracks in PC-2 and PC-3 is 0.4 and 0.6 times larger than that of PC-1 along the buried depth direction, which indicates that the increase of prestress level increases the pile-soil interaction area, and the effect is more significant than that of increasing the buried depth of pile foundation. With the increase of displacement load, the tensile and compressive strain distribution of PC-1 first appears asymmetry, while PC-2 and PC-3 remain symmetrical under larger displacement load. Compared with the non prestressed concrete piles with different buried depths, it is found that the application of prestress can significantly improve the elastic working range of pile foundation and the integrity and anti cracking ability of pile body compared with increasing the buried depth of pile foundation. Through the analysis and comparison of the bearing ratio of the model pile, it can be seen that increasing the prestress can improve the bearing capacity of the pile body and give full play to the bearing capacity of the soil around the pile. Compared with PC-1, the positive critical load, yield load and peak load of PC-2 and PC-3 are increased, and the yield load is increased by 17.8% and 42.3% respectively than that of PC-1, which indicates that the prestress can increase the elastic working range of concrete pile and improve the deformation capacity. The equivalent stiffness degradation rate of PC-1 is faster than that of PC-2 and PC-3, which indicates that the stiffness degradation of concrete pile can be slowed down by prestressing. Compared with the theoretical calculation value of PHC pipe pile equivalent stiffness, the theoretical calculation value of PHC pipe pile is relatively safe, which can be applied to the calculation of equivalent stiffness of PC pile.

参考文献/References:

[1] HUNTLEY S A, VALSANGKAR A J. Behavior of H-piles Supporting an Integral Abutment Bridge[J]. Canadian Geotechnical Journal, 2014, 51(7): 713-734.
[2]黄福云,庄一舟,付 毳,等.无伸缩缝梁桥抗震性能与设计计算方法研究[J].地震工程与工程振动,2015,35(5):15-22.
HUANG Fu-yun,ZHUANG Yi-zhou,FU Cui,et al.Review on the Seismic Performance and Simplified Design Method of Jointless Bridge[J].Earthquake Engineering and Engineering Dynamics,2015,35(5):15-22.
[3]彭大文,洪锦祥,郭爱民,等.无伸缩缝桥梁的动力特性计算与试验研究[J].地震工程与工程振动,2005,25(2):72-76.
PENG Da-wen,HONG Jin-xiang,GUO Ai-min,et al.Dynamic Analysis and Field-test of Jointless Bridge[J].Earthquake Engineering and Engineering Dynamics,2005,25(2):72-76.
[4]陈宝春,庄一舟,黄福云,等.无伸缩缝桥梁[M].2版.北京:人民交通出版社,2019.
CHEN Bao-chun,ZHUANG Yi-zhou,HUANG Fu-yun,et al.Jointless Bridges[M].2nd ed.Beijing:China Communications Press,2019.
[5]戴 民,周云东,张 霆.桩土相互作用研究综述[J].河海大学学报:自然科学版,2006,34(5):568-571.
DAI Min,ZHOU Yun-dong,ZHANG Ting.Recent Researches on Soil-pile Interaction[J].Journal of Ho-hai University:Natural Sciences,2006,34(5):568-571.
[6]彭大文,林志平,洪锦祥.无伸缩缝桥梁的研究与实践[J].公路,2006(8):53-62.
PENG Da-wen,LIN Zhi-ping,HONG Jin-xiang.Research and Practice for Jointless Bridges[J].Highway,2006(8):53-62.
[7]DUNKER K F,LIU D.Foundations for Integral Abutments[J].Practice Periodical on Structural Design and Construction,2007,12(1):22-30.
[8]DILLELI M,ENG P,ALBHAISI S M.Maximum Length of Integral Bridges Supported on Steel H-piles Driven in Sand[J].Engineering Structures,2003,25(12):1491-1504.
[9]GOEL R K.Earthquake Characteristics of Bridges with Integral Abutments[J].Journal of Structural Engineering,1997,123(11):1435-1443.
[10]MONZON E V,ITANI A M,PEKCAN G.Seismic Behavior and Design of Steel Girder Bridges with Integral Abutments[J].Bridge Structures,2014,10(4):117-128.
[11]GAMA D,ALMEIDA J F.Concrete Integral Abutment Bridges with Reinforced Concrete Piles[J].Structural Concrete,2015,15(3):292-304.
[12]KUNIN J,ALAMPALLI S.Integral Abutment Bridges:Current Practice in United States and Canada[J].Journal of Performance of Constructed Facilities,2000,14(3):104-111.
[13]DUNCAN J M,ARSOY S.Effect of Bridge-soil Interaction on Behavior of Piles Supporting Integral Bridges[J].Transportation Research Record,2003,1849(1): 91-97.
[14]ARSOY S,DUNCAN J M,BARKER R M.Performance of Piles Supporting Integral Bridges[J].Transportation Research Record,2002,1808(1):162-167.
[15]BURDETTE E G,TIDWELL J B,INGRAM E,et al.Lateral Load Tests on Prestressed Concrete Piles Supporting Integral Abutments[J].PCI Journal,2004,49(5):70-77.
[16]JOEN P H,PARK R.Simulated Seismic Load Tests on Prestressed Concrete Piles and Pile-pile Cap Connections[J].PCI Journal,1990,35(6):42-61.
[17]KAMEL M R,BENAK J V,TADROS M K,et al.Prestressed Concrete Piles in Jointless Bridges[J].PCI Journal,1996,41(2):56-67.
[18]HARRIES K A,PETROU M F.Behavior of Precast,Prestressed Concrete Pile to Cast-in-place Pile Cap Connections[J].PCI Journal,2001,46(4):82-92.
[19]KONG B,CAI C S,KONG X.Field Monitoring Study of an Integral Abutment Bridge Supported by Prestressed Precast Concrete Piles on Soft Soils[J].Engineering Structures,2015,104:18-31.
[20]黄福云,陈汉伦,董 锐,等.水平低周往复位移下单桩-土相互作用试验研究[J].岩土力学,2020,41(5):1625-1634.
HUANG Fu-yun,CHEN Han-lun,DONG Rui,et al.Experimental Study on Single Pile-soil Interaction Under Horizontal Low-cycle Reciprocating Displacement[J].Rock and Soil Mechanics,2020,41(5):1625-1634.
[21]庄一舟,黄福云,钱海敏,等.PHC管桩-土相互作用受力性能拟静力试验[J].中国公路学报,2017,30(4):42-51,71.
ZHUANG Yi-zhou,HUANG Fu-yun,QIAN Hai-min,et al.Pseudo-static Test Research on Mechanic Behavior of PHC Piles with Soil-pile Interaction[J].China Journal of Highway and Transport,2017,30(4):42-51,71.
[22]黄福云,林友炜,程俊峰,等.整体式桥台-H形钢桩-土相互作用低周往复拟静力试验[J].中国公路学报,2019,32(5):100-114.
HUANG Fu-yun,LIN You-wei,CHENG Jun-feng,et al.Interaction of Integral Abutment-H-shaped Steel Pile-soil Under Reciprocating Low-cycle Pseudo-static Test[J].China Journal of Highway and Transport,2019,32(5):100-114.
[23]PARK R.Evaluation of Ductility of Structures and Structural Assemblages from Laboratory Testing[J].Bulletin of the New Zealand National Society for Earthquake Engineering,1989,22(3):155-166.

相似文献/References:

[1]刘荣桂,刘德鑫,延永东,等.CFRP筋复合型锚具锚固性能研究[J].建筑科学与工程学报,2013,30(02):9.
 LIU Rong-gui,LIU De-xin,YAN Yong-dong.[J].Journal of Architecture and Civil Engineering,2013,30(01):9.
[2].《建筑科学与工程学报》征稿简则[J].建筑科学与工程学报,2013,30(02):127.
[3]李加武,黄森华,王新.开口断面斜拉桥主梁动力特性的有限元简化计算[J].建筑科学与工程学报,2013,30(04):59.
 LI Jia-wu,HUANG Sen-hua,WANG Xin.Finite Element Simplified Computation for Dynamic Characteristics of Cable-stayed Bridge Girder with Opening Section[J].Journal of Architecture and Civil Engineering,2013,30(01):59.
[4]任 伟,盖轶婷,王 锦.混凝土自锚式悬索桥过程控制状态分析[J].建筑科学与工程学报,2014,31(03):45.
 REN Wei,GAI Yi-ting,WANG Jin.Analysis of Process Control State About Concrete Selfanchored Suspension Bridge[J].Journal of Architecture and Civil Engineering,2014,31(01):45.
[5]李加武,周 琴,黄森华.简支梁桥铅芯橡胶支座减震特性研究[J].建筑科学与工程学报,2014,31(03):124.
 LIU Xin-hua,LI Jia-wu,ZHOU Qin,et al.Research on Seismic Isolation Characteristics of LRB for Simply Supported Beam Bridge[J].Journal of Architecture and Civil Engineering,2014,31(01):124.
[6]韦建刚,黄 蕾,李佩元,等.旧空心板简支梁桥的连续化改造加固研究[J].建筑科学与工程学报,2014,31(04):103.
 WEI Jian-gang,HUANG Lei,LI Pei-yuan,et al.Research on Continuous Transformation and Reinforcement for Old Simply Supported Hollow Slab Bridge[J].Journal of Architecture and Civil Engineering,2014,31(01):103.
[7]周 帅,曾永平,杨国静,等.桥梁箱型吊杆涡振与驰振耦合振动的数值模拟[J].建筑科学与工程学报,2015,32(02):84.
 ZHOU Shuai,ZENG Yong-ping,YANG Guo-jing,et al.Numerical Simulation on Coupled Vibration of Vortex-induced Vibration and Galloping Vibration for Box Hangers of Bridges[J].Journal of Architecture and Civil Engineering,2015,32(01):84.
[8]赵士良,韩万水,鲁永飞,等.重载交通条件下装配式RC板桥抗裂性分析[J].建筑科学与工程学报,2015,32(04):73.
 ZHAO Shi-liang,HAN Wan-shui,LU Yong-fei,et al.Crack Resistance Analysis on Prefabricated RC Slab Bridge Under Heavy Traffic[J].Journal of Architecture and Civil Engineering,2015,32(01):73.
[9]贡金鑫,江力财,赵尚传,等.桥梁拉吊索用不锈钢钢丝腐蚀性能及斜拉索时变可靠度研究[J].建筑科学与工程学报,2015,32(05):8.
 GONG Jin-xin,JIANG Li-cai,ZHAO Shang-chuan,et al.Study on Corrosion Properties of Stainless Steel Wire for Cable Use and Time-variant Reliability of Stay Cable of Bridge[J].Journal of Architecture and Civil Engineering,2015,32(01):8.
[10]李立峰,刘守苗,吴文朋.氯离子侵蚀效应对RC桥墩抗震性能的影响[J].建筑科学与工程学报,2015,32(05):56.
 LI Li-feng,LIU Shou-miao,WU Wen-peng.Influence of Chloride Ion Corrosion on Seismic Performance of Reinforced Concrete Piers[J].Journal of Architecture and Civil Engineering,2015,32(01):56.

备注/Memo

备注/Memo:
收稿日期:2020-05-29
基金项目:国家自然科学基金项目(51578161); 福州市科技计划项目(2018-G-63)
作者简介:黄福云(1979-),男,江西丰城人,研究员,博士研究生导师,工学博士,E-mail:Huangfuyun@fzu.edu.cn。
更新日期/Last Update: 2021-01-20