|本期目录/Table of Contents|

[1]邢子寒,刘永健,闫新凯,等.不同截面形式混凝土梁桥的竖向温度梯度效应分析[J].建筑科学与工程学报,2022,39(02):97-110.[doi:10.19815/j.jace.2021.04090]
 XING Zi-han,LIU Yong-jian,YAN Xin-kai,et al.Analysis of Vertical Temperature Gradient Effects of Concrete Girder Bridges with Different Cross Sections[J].Journal of Architecture and Civil Engineering,2022,39(02):97-110.[doi:10.19815/j.jace.2021.04090]
点击复制

不同截面形式混凝土梁桥的竖向温度梯度效应分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年02期
页码:
97-110
栏目:
桥梁工程
出版日期:
2022-03-30

文章信息/Info

Title:
Analysis of Vertical Temperature Gradient Effects of Concrete Girder Bridges with Different Cross Sections
文章编号:
1673-2049(2022)02-0097-14
作者:
邢子寒1刘永健12闫新凯1王小龙3刘 江1
(1. 长安大学 公路学院,陕西 西安 710064; 2. 长安大学 公路大型结构安全教育部工程研究中心,陕西 西安 710064; 3. 中交第二公路工程局有限公司,陕西 西安 710065 )
Author(s):
XING Zi-han1 LIU Yong-jian12 YAN Xin-kai1 WANG Xiao-long3 LIU Jiang1
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Engineering Research Center for Large Highway Structure Safety of Ministry of Education, Chang'an University, Xi'an 710064, Shaanxi, China; 3. CCCC Second Highway Engineering Co., Ltd, Xi'an 710065, Shaanxi, China)
关键词:
桥梁工程 混凝土梁桥 温度梯度 温度效应 效应对比 跨径 截面形式 结构体系
Keywords:
bridge engineering concrete girder bridge temperature gradient temperature effect effect comparison span cross-section form structural system
分类号:
TU973.2
DOI:
10.19815/j.jace.2021.04090
文献标志码:
A
摘要:
为分析不同规范中混凝土梁桥竖向温度梯度模式的差异,评估竖向温度梯度效应对混凝土梁桥的影响程度,总结了不同国家和行业规范中混凝土梁桥的竖向温度梯度模式,从梯度曲线形式和温度基数取值两方面讨论了效应计算结果的差异。选取了20多座不同结构体系、跨径和截面形式的混凝土梁桥,计算了在包括桥梁变形和截面应力在内的2种典型的竖向正温度梯度作用下的各项效应,与自重和汽车作用产生的效应作了对比。结果表明:不同规范的竖向温度梯度模式在梯度曲线形式和温度基数取值方面存在显著差异,它们对温度效应计算结果具有同等程度的影响; 顶部温差的影响深度越大,桥梁的变形和次生弯矩越大,考虑底部升温段时截面下缘有更大的自压应力; 不同的铺装层类型和气候条件造成桥梁温度基数取值存在差异,进而导致温度效应可能相差1.5倍~2.0倍; 相同结构体系和截面形式的中小跨混凝土梁桥随着跨径增大,自重效应占比增加,汽车和温度效应占比减小,但是温度和汽车效应的相对比例基本保持不变; 结构体系和跨径相同时,T梁的温度效应占比要比空心板和小箱梁高出0.6%~16.5%; 温度效应在一些效应类型中占有很大比例,温度作用引起的中小跨简支梁桥的变形和截面上缘应力能与自重和汽车效应相近,引起的中小跨连续梁桥的截面上缘应力能超过自重和汽车效应甚至两者总和,墩顶截面下缘应力能与自重和汽车效应相当,引起的大跨径连续箱梁桥截面上缘应力能超过汽车效应的数倍; 若考虑铺装层类型和气候条件的影响,在温度基数取值较大的梁桥上,温度效应占比可能更高。
Abstract:
In order to analyze the difference of vertical temperature gradient patterns of concrete girder bridge in different specifications and evaluate the influence degree of vertical temperature gradient effect on concrete girder bridge, the vertical temperature gradient patterns of concrete girder bridge in different national and industrial codes were summarized. The differences of the effect calculation results were discussed from the gradient curve form and the temperature base values. More than 20 concrete girder bridges with different structural systems, spans and cross sections were selected to calculate the effect under two typical vertical positive temperature gradients, including the deformation of the bridge and the stresses in the section. The temperature effects were compared with the effect induced by the self-weight and the vehicle loads. The results show that there are significant differences in the form of gradient curve and the base value of temperature in different vertical temperature gradient patterns, which equally influence the calculation results of temperature effect calculation results. The greater the influence depth of the top temperature difference is, the greater the deformation and secondary bending moment of the bridge, and the greater the self-equilibrium pressure stress is at the bottom edge of the section when the bottom heating part is considered. Different pavement types and climate conditions lead to different temperature base values in bridges, which may lead to a 1.5-2.0 times difference of temperature effects. For the middle and small span concrete girder bridges with same structural system and cross section, the proportions of self-weight effect increase, and the proportions of vehicle and temperature effect decrease with the increase of span, but the relative proportions of temperature and vehicle effects basically remain unchanged. The temperature effect proportions of T-girders are higher than that of hollow slab and small-box girder with the same structural system and span, which are 0.6%-16.5%. The temperature effect accounts for a large proportion of some effect types. The deformation of the girder and the stress on the top edge of the section in the middle and small span simple-supported concrete girder bridge caused by the temperature effect are equivalent to that of the self-weight and vehicle effect. The stresses on the top edge of the section in the middle and small span continuous girder bridge caused by temperature gradient can exceed that of the self-weight and vehicle effect, or even the sum of them, and the stress on the bottom edge of the section at the pier can be equivalent to that of the self-weight and vehicle effect. The temperature stresses on the top edge of the long-span continuous box girder bridge are several times bigger than that induced by vehicle effect. Considering the influences of pavement type and climate condition, the proportion of temperature effect may be higher in the bridge with larger temperature base value.

参考文献/References:

[1] 刘永健,刘 江,张 宁.桥梁结构日照温度作用研究综述[J].土木工程学报,2019,52(5):59-78.
LIU Yong-jian,LIU Jiang,ZHANG Ning.Review on Solar Thermal Actions of Bridge Structures[J].China Civil Engineering Journal,2019,52(5):59-78.
[2]刘永健,刘 江.钢-混凝土组合梁桥温度作用与效应综述[J].交通运输工程学报,2020,20(1):42-59.
LIU Yong-jian,LIU Jiang.Review on Temperature Action and Effect of Steel-concrete Composite Girder Bridge[J].Journal of Traffic and Transportation Engineering,2020,20(1):42-59.
[3]LIU J,LIU Y J,YAN X K,et al.Statistical Investigation on the Temperature Actions of CFST Truss Based on Long-term Measurement[J].Journal of Bridge Engineering,2021,26(8):04021045.
[4]ELBADRY M,GHALI A.Thermal Stresses and Cracking of Concrete Bridges[J].Journal of the American Concrete Institute,1986,83(6):1001-1009.
[5]LEE J H.Behavior of Precast Prestressed Concrete Bridge Girders Involving Thermal Effects and Initial Imperfections During Construction[J].Engineering Structures,2012,42:1-8.
[6]韩 石,刘永健,王振华,等.高寒地区组合梁斜拉桥施工阶段温度效应研究[J].建筑科学与工程学报,2021,38(5):107-117.
HAN Shi,LIU Yong-jian,WANG Zhen-hua,et al.Study on Temperature Effect of Composite Girder Cable-stayed Bridge During Construction in Alpine Region[J].Journal of Architecture and Civil Engineering,2021,38(5):107-117.
[7]PRIESTLEY M J N.Design of Concrete Bridges for Temperature Gradients[J].Journal of the American Concrete Institute,1978,75(5):209-217.
[8]Bridge Manual.Section 3:Design Loading:SM061[S].Wellingtion:Transit New Zealand,2003.
[9]刘 江,刘永健,白永新,等.混凝土箱梁温度梯度模式的地域差异性及分区研究[J].中国公路学报,2020,33(3):73-84.
LIU Jiang,LIU Yong-jian,BAI Yong-xin,et al.Regional Variation and Zoning of Temperature Gradient Pattern of Concrete Box Girder[J].China Journal of Highway and Transport,2020,33(3):73-84.
[10]AASHTO LRFD Bridge Design Specification[S].Washington:AASHTO,2012.
[11]IMSEN R A,VANDERSHAF D E,SCHAMBER R A,et al.Thermal Effects in Concrete Bridge Super Structures[R].Washington DC:American Association of State Highway and Transportation Officials,1985.
[12]公路桥涵设计通用规范:JTG D60—2015[S].北京:人民交通出版社,2015.
General Specifications for Design of Highway Bridges and Culverts:JTG D60—2015[S].Beijing:China Communications Press,2015.
[13]Eurocode 1:Actions on Structures — Part1-5:General Actions — Thermal Actions:EN 1991-1-5[S].Brussels:European Committee for Standardization,2003.
[14]Steel,Concrete and Composite Bridges — Part 2:Specification for Loads:BS5400-2(1978)[S].London:British Standards Institution,1978.
[15]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991.
LIU Xing-fa.Analysis of Thermal Stress in Concrete Structure[M].Beijing:China Communications Press,1991.
[16]铁路桥涵混凝土结构设计规范:TB 10092—2017[S].北京:中国铁道出版社,2017.
Code for Design of Concrete Structures of Railway Bridge and Culvert:TB 10092—2017[S].Beijing:China Railway Publishing House,2017.
[17]曾庆响,韩大建,马海涛,等.预应力混凝土箱梁桥的温度效应分析[J].中南大学学报(自然科学版),2010,41(6):2360-2366.
ZENG Qing-xiang,HAN Da-jian,MA Hai-tao,et al.Analysis of Temperature Effects on Prestressed Concrete Box Girder Bridges[J].Journal of Central South University(Science and Technology),2010,41(6):2360-2366.
[18]薛 刚,孟煜童,白纬宇.大跨度混凝土连续箱梁桥运营阶段的温度场分析[J].工程力学,2017,34(增):116-121.
XUE Gang,MENG Yu-tong,BAI Wei-yu.Temperature Field Analysis of Large-span Concrete Continuous Box-girder Bridge in Operation Stage[J].Engineering Mechanics,2017,34(S):116-121.
[19]卫俊岭,王 浩,茅建校,等.混凝土连续箱梁桥温度场数值模拟及实测验证[J].东南大学学报(自然科学版),2021,51(3):378-383.
WEI Jun-ling,WANG Hao,MAO Jian-xiao,et al.Numerical Simulation and Test Verification for Temperature Field of Concrete Continuous Box Girder Bridges[J].Journal of Southeast University(Natural Science Edition),2021,51(3):378-383.
[20]雷 笑,叶见曙,王 毅.日照作用下混凝土箱梁的温差代表值[J].东南大学学报(自然科学版),2008,38(6):1105-1109.
LEI Xiao,YE Jian-shu,WANG Yi.Representative Value of Solar Thermal Difference Effect on PC Box-girder[J].Journal of Southeast University(Natural Science Edition),2008,38(6):1105-1109.
[21]陶 翀,谢 旭,申永刚,等.基于概率分析的混凝土箱梁温度梯度模式[J].浙江大学学报(工学版),2014,48(8):1353-1361.
TAO Chong,XIE Xu,SHEN Yong-gang,et al.Study on Temperature Gradient of Concrete Box Girder Based on Probability Analysis[J].Journal of Zhejiang University(Engineering Science),2014,48(8):1353-1361.
[22]ABID S R,TAYSI N,OZAKCA M.Experimental Analysis of Temperature Gradients in Concrete Box-girders[J].Construction and Building Materials,2016,106:523-532.
[23]SONG X M,MELHEM H,LI J,et al.Effects of Solar Temperature Gradient on Long-span Concrete Box Girder During Cantilever Construction[J].Journal of Bridge Engineering,2016,21(3):04015061.
[24]GU B,ZHOU F Y,GAO W,et al.Temperature Gradient and Its Effect on Long-span Prestressed Concrete Box Girder Bridge[J].Advances in Civil Engineering,2020,2020(9):1-18.
[25]HAN Q H,MA Q,XU J,et al.Structural Health Monitoring Research Under Varying Temperature Condition:A Review[J].Journal of Civil Structural Health Monitoring,2021,11(1):149-173.
[26]吴海军,何 立,韦 跃.预应力混凝土梁桥挠度监测的温度效应分离方法[J].重庆交通大学学报(自然科学版),2020,39(8):66-71,83.
WU Hai-jun,HE Li,WEI Yue.Temperature Effect Separation Method of Deflection Monitoring of Prestressed Concrete Girder Bridge[J].Journal of Chongqing Jiaotong University(Natural Science),2020,39(8):66-71,83.
[27]XU X,HUANG Q,REN Y,et al.Modeling and Separation of Thermal Effects from Cable-stayed Bridge Response[J].Journal of Bridge Engineering,2019,24(5):04019028.
[28]ZHOU Y,XIA Y,CHEN B,et al.Analytical Solution to Temperature-induced Deformation of Suspension Bridges[J].Mechanical Systems and Signal Processing,2020,139:106568.
[29]吴海军,袁光杰,屈浩然,等.常见中小跨混凝土梁桥的恒活载效应比例关系研究[J].重庆交通大学学报(自然科学版),2019,38(8):33-38.
WU Hai-jun,YUAN Guang-jie,QU Hao-ran,et al.Constant Live-load Effect Ratio of Common Small and Medium Span Concrete Beam Bridges[J].Journal of Chongqing Jiaotong University(Natural Science),2019,38(8):33-38.
[30]交通部专家委员会.公路桥梁通用图[M].北京:人民交通出版社,2008.
Expert Committee of the Ministry of Communication.General Map of Highway and Bridges[M].Beijing:China Communications Press,2008.
[31]王永宝,赵人达,张双洋.桥梁结构温度场测点布置方法[J].沈阳建筑大学学报(自然科学版),2016,32(2):271-278.
WANG Yong-bao,ZHAO Ren-da,ZHANG Shuang-yang.Research on Measuring Points Distribution in the Temperature Field of Bridge Structure[J].Journal of Shenyang Jianzhu University(Natural Science),2016,32(2):271-278.
[32]任 翔,黄平明,韩万水.混凝土薄壁箱形结构横向温度应力解析计算方法[J].中国公路学报,2012,25(1):76-82.
REN Xiang,HUANG Ping-ming,HAN Wan-shui.Transverse Temperature Stress Computation Method of Concrete Thin-wall Box-shape Structure[J].China Journal of Highway and Transport,2012,25(1):76-82.
[33]刘永健,刘 江,张 宁,等.钢-混凝土组合梁温度效应的解析解[J].交通运输工程学报,2017,17(4):9-19.
LIU Yong-jian,LIU Jiang,ZHANG Ning,et al.Analytical Solution of Temperature Effects of Steel-concrete Composite Girder[J].Journal of Traffic and Transportation Engineering,2017,17(4):9-19.

相似文献/References:

[1]刘荣桂,刘德鑫,延永东,等.CFRP筋复合型锚具锚固性能研究[J].建筑科学与工程学报,2013,30(02):9.
 LIU Rong-gui,LIU De-xin,YAN Yong-dong.[J].Journal of Architecture and Civil Engineering,2013,30(02):9.
[2].《建筑科学与工程学报》征稿简则[J].建筑科学与工程学报,2013,30(02):127.
[3]李加武,黄森华,王新.开口断面斜拉桥主梁动力特性的有限元简化计算[J].建筑科学与工程学报,2013,30(04):59.
 LI Jia-wu,HUANG Sen-hua,WANG Xin.Finite Element Simplified Computation for Dynamic Characteristics of Cable-stayed Bridge Girder with Opening Section[J].Journal of Architecture and Civil Engineering,2013,30(02):59.
[4]任 伟,盖轶婷,王 锦.混凝土自锚式悬索桥过程控制状态分析[J].建筑科学与工程学报,2014,31(03):45.
 REN Wei,GAI Yi-ting,WANG Jin.Analysis of Process Control State About Concrete Selfanchored Suspension Bridge[J].Journal of Architecture and Civil Engineering,2014,31(02):45.
[5]李加武,周 琴,黄森华.简支梁桥铅芯橡胶支座减震特性研究[J].建筑科学与工程学报,2014,31(03):124.
 LIU Xin-hua,LI Jia-wu,ZHOU Qin,et al.Research on Seismic Isolation Characteristics of LRB for Simply Supported Beam Bridge[J].Journal of Architecture and Civil Engineering,2014,31(02):124.
[6]韦建刚,黄 蕾,李佩元,等.旧空心板简支梁桥的连续化改造加固研究[J].建筑科学与工程学报,2014,31(04):103.
 WEI Jian-gang,HUANG Lei,LI Pei-yuan,et al.Research on Continuous Transformation and Reinforcement for Old Simply Supported Hollow Slab Bridge[J].Journal of Architecture and Civil Engineering,2014,31(02):103.
[7]周 帅,曾永平,杨国静,等.桥梁箱型吊杆涡振与驰振耦合振动的数值模拟[J].建筑科学与工程学报,2015,32(02):84.
 ZHOU Shuai,ZENG Yong-ping,YANG Guo-jing,et al.Numerical Simulation on Coupled Vibration of Vortex-induced Vibration and Galloping Vibration for Box Hangers of Bridges[J].Journal of Architecture and Civil Engineering,2015,32(02):84.
[8]赵士良,韩万水,鲁永飞,等.重载交通条件下装配式RC板桥抗裂性分析[J].建筑科学与工程学报,2015,32(04):73.
 ZHAO Shi-liang,HAN Wan-shui,LU Yong-fei,et al.Crack Resistance Analysis on Prefabricated RC Slab Bridge Under Heavy Traffic[J].Journal of Architecture and Civil Engineering,2015,32(02):73.
[9]贡金鑫,江力财,赵尚传,等.桥梁拉吊索用不锈钢钢丝腐蚀性能及斜拉索时变可靠度研究[J].建筑科学与工程学报,2015,32(05):8.
 GONG Jin-xin,JIANG Li-cai,ZHAO Shang-chuan,et al.Study on Corrosion Properties of Stainless Steel Wire for Cable Use and Time-variant Reliability of Stay Cable of Bridge[J].Journal of Architecture and Civil Engineering,2015,32(02):8.
[10]李立峰,刘守苗,吴文朋.氯离子侵蚀效应对RC桥墩抗震性能的影响[J].建筑科学与工程学报,2015,32(05):56.
 LI Li-feng,LIU Shou-miao,WU Wen-peng.Influence of Chloride Ion Corrosion on Seismic Performance of Reinforced Concrete Piers[J].Journal of Architecture and Civil Engineering,2015,32(02):56.

备注/Memo

备注/Memo:
收稿日期:2021-04-12
基金项目:国家自然科学基金项目(51978061); 中央高校基本科研业务费专项资金项目(300102219310); 内蒙古自治区交通科技项目(NJ-2018-27); 青海省重点研发与转化计划项目(2021-SF-166)
作者简介:邢子寒(1998-),男,陕西西安人,工学硕士研究生,E-mail:1137935228@qq.com。通信作者:刘永健(1966-),男,江西玉山人,教授,博士研究生导师,工学博士,E-mail:liuyongjian@c
更新日期/Last Update: 2022-03-20