|本期目录/Table of Contents|

[1]龙 刚,刘永健,朱伟庆,等.变截面圆钢管混凝土短柱轴心受压性能研究[J].建筑科学与工程学报,2023,40(06):45-57.[doi:10.19815/j.jace.2022.02068]
 LONG Gang,LIU Yongjian,ZHU Weiqing,et al.Axial compression performance of CFST short columns with variable circular cross sections[J].Journal of Architecture and Civil Engineering,2023,40(06):45-57.[doi:10.19815/j.jace.2022.02068]
点击复制

变截面圆钢管混凝土短柱轴心受压性能研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年06期
页码:
45-57
栏目:
建筑结构
出版日期:
2023-11-30

文章信息/Info

Title:
Axial compression performance of CFST short columns with variable circular cross sections
文章编号:
1673-2049(2023)06-0045-13
作者:
龙 刚1,2,刘永健1,朱伟庆1,任鹏举1,3
(1. 长安大学 公路学院,陕西 西安 710064; 2. 西安环通市政工程项目管理有限公司,陕西 西安 710038; 3. 同济大学 道路与交通工程教育部重点实验室,上海 200092)
Author(s):
LONG Gang1,2, LIU Yongjian1, ZHU Weiqing1, REN Pengju1,3
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Xi'an Huantong Municipal Engineering Project Management Co., Ltd., Xi'an 710038, Shaanxi, China; 3. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, China)
关键词:
桥梁工程 钢管混凝土短柱 试验研究 轴压性能 变截面 承载力
Keywords:
bridge engineering CFST short column experimental study axial compression performance variable cross section bearing capacity
分类号:
U448.36
DOI:
10.19815/j.jace.2022.02068
文献标志码:
A
摘要:
为研究变截面圆钢管混凝土短柱的轴压性能,开展6个变截面和2个等截面圆钢管混凝土短柱的轴压试验,试验参数包括变角度和套箍指标。从短柱整体轴压性能(破坏形态、荷载-位移曲线和变形能力)和截面轴压性能(钢管应变)两个层面对比分析变截面与等截面圆钢管混凝土短柱的异同,并得到各设计参数对整体和截面轴压性能的影响。在此基础上,建立了变截面圆钢管混凝土的截面轴压承载力计算方法,并通过对比所提计算方法和规范计算公式计算得到的轴压承载力与试验实测值,验证了计算方法的准确性。结果表明:试件上部截面的钢管纵向应变和环向应变发展较下部截面更快,弹塑性阶段和下降阶段试件整体的受力性能更多取决于试件的顶部区域和顶截面; 相比于等截面短柱,在相同荷载作用下变截面圆钢管混凝土短柱中间截面的钢管纵向和环向应变更大; 变截面圆钢管混凝土的钢-混相互作用非常明显; 提出的计算方法不仅能考虑圆钢管与混凝土的相互作用,而且能合理考虑钢-混相互作用随变角度的增大而逐渐增强这一特性,计算得到的轴压承载力与试验值吻合较好; 与其他规范相比,GB 50936—2014和CECS 28:2012中公式的计算结果更加准确,考虑到其简单实用,也可用来偏于安全地计算变截面钢管混凝土构件的截面轴压承载力。
Abstract:
In order to study the axial compression performance of concrete filled steel tube(CFST)short columns with variable circular cross sections, six CFST short columns with variable circular cross sections and two CFST short columns with constant circular cross sections were tested under axial compression. The test parameters included variable angle and hoop index. Comparative analysis of the similarities and differences between CFST short columns with variable circular cross section and constant circular cross section was carried out from two aspects: the overall axial compression performance of the short column(failure mode, load-displacement curve, and deformation capacity)and the axial compression performance of the section(steel tube strain). The influence of various design parameters on the overall and cross section axial compression performance was obtained. On the basis, a calculation method for the axial compressive bearing capacity of CFST with with variable circular cross section was established. The accuracy of the proposed calculation method was verified by comparing the axial compression bearing capacity values calculated by the proposed calculation method and the standard calculation formula with the experimental measured values. The results show that the longitudinal and circumferential strains of the steel tube in the upper section of the specimen develop faster than those in the lower section. The overall stress performance of the specimen during the elastic-plastic and descending stages depends more on the top area and top section of the specimen. Compared to constant cross-section short columns, the longitudinal and circumferential stresses of the steel tube in the middle section of CFST short columns with variable circular cross sections is larger under the same load. The steel-concrete interaction of CFST with variable circular cross section is very obvious. The proposed calculation method can not only consider the interaction between circular steel tube and concrete, but also reasonably consider the characteristic that the steel-concrete interaction gradually increases with the increase of variable angle, and the calculated axial compression bearing capacity is in good agreement with the experimental values. Compared with other specifications, the calculation results of the formulas in GB 50936—2014 and CECS 28:2012 are relatively more accurate, considering its simplicity and practicality, it can also be used to safely calculate the axial compression bearing capacity of steel tube concrete members with variable cross section.

参考文献/References:

[1] 蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报,1984,5(6):13-29.
CAI Shaohuai,JIAO Zhanshuan.Behavior and ultimate strength of short concrete-filled steel tubular columns[J].Journal of Building Structures,1984,5(6):13-29.
[2]HAN L H,YAO G H.Influence of concrete compaction on the strength of concrete-filled steel RHS columns[J].Journal of Constructional Steel Research,2003,59(6):751-767.
[3]ELLOBODY E,YOUNG B,LAM D.Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns[J].Journal of Constructional Steel Research,2006,62(7):706-715.
[4]SAKINO K,NAKAHARA H,MORINO S,et al.Behavior of centrally loaded concrete-filled steel-tube short columns[J].Journal of Structural Engineering,2004,130(2):180-188.
[5]刘永健,姜 磊,张 宁.钢管混凝土中钢管的纵向容许应力[J].建筑科学与工程学报,2015,32(6):1-7.
LIU Yongjian,JIANG Lei,ZHANG Ning.Longitudinal allowable stress of steel tube in concrete-filled steel tube[J].Journal of Architecture and Civil Engineering,2015,32(6):1-7.
[6]姜 磊,刘永健,侯蓓蓓.钢管混凝土拱肋轴力-应变关系[J].中国公路学报,2016,29(11):90-98.
JIANG Lei,LIU Yongjian,HOU Beibei.Axial force-strain relationship of concrete-filled steel tube arch rib[J].China Journal of Highway and Transport,2016,29(11):90-98.
[7]HAN L H,REN Q X,LI W.Tests on inclined,tapered and STS concrete-filled steel tubular(CFST)stub columns[J].Journal of Constructional Steel Research,2010,66(10):1186-1195.
[8]LAM D,DAI X H,HAN L H,et al.Behaviour of inclined,tapered and STS square CFST stub columns subjected to axial load[J].Thin-walled Structures,2012,54:94-105.
[9]任鹏举,龙 刚,朱伟庆,等.变截面钢管混凝土短柱轴压性能研究[J].建筑结构,2019,49(增1):555-560.
REN Pengju,LONG Gang,ZHU Weiqing,et al.Study on axial compression performance of concrete filled steel tubular short columns with variable cross section[J].Building Structure,2019,49(S1):555-560.
[10]LI W,REN Q X,HAN L H,et al.Behaviour of tapered concrete-filled double skin steel tubular(CFDST)stub columns[J].Thin-walled Structures,2012,57:37-48.
[11]LI W,HAN L H,REN Q X,et al.Behavior and calculation of tapered CFDST columns under eccentric compression[J].Journal of Constructional Steel Research,2013,83:127-136.
[12]REN Q X,HAN L H,HOU C,et al.Experimental behaviour of tapered CFST columns under combined compression and bending[J].Journal of Constructional Steel Research,2017,128:39-52.
[13]任庆新,刘绍鹏,贾连光.圆锥形钢管混凝土长柱力学性能研究[J].工业建筑,2014,44(4):32-36.
REN Qingxin,LIU Shaopeng,JIA Lianguang.Research on circular tapered concrete-filled steel tubular long columns[J].Industrial Construction,2014,44(4):32-36.
[14]任庆新,李 林,王庆利.方锥形钢管混凝土长柱工作机理分析[J].工业建筑,2014,44(4):27-31.
REN Qingxin,LI Lin,WANG Qingli.Behaviour of square tapered concrete-filled steel tubular long columns[J].Industrial Construction,2014,44(4):27-31.
[15]史艳莉,张 宸,王景玄,等.圆锥形中空夹层钢管混凝土压弯构件抗震性能[J].建筑科学与工程学报,2019,36(5):80-88.
SHI Yanli,ZHANG Chen,WANG Jingxuan,et al.Seismic behavior of tapered concrete-filled double skin steel tube compression-bending members[J].Journal of Architecture and Civil Engineering,2019,36(5):80-88.
[16]欧智菁,晏巧玲,薛建阳,等.变截面钢管混凝土格构柱轴压极限承载力[J].重庆大学学报,2016,39(5):114-120.
OU Zhijing,YAN Qiaoling,XUE Jianyang,et al.The ultimate load carrying capacity of variable cross-sectional concrete filled steel tubular laced columns on axial load[J].Journal of Chongqing University,2016,39(5):114-120.
[17]欧智菁,陈盛富,吴庆雄,等.变截面钢管混凝土格构柱抗震性能试验研究[J].建筑结构学报,2018,39(3):77-83.
OU Zhijing,CHEN Shengfu,WU Qingxiong,et al.Experimental research on seismic performance of variable cross-sectional concrete filled steel tubular laced columns[J].Journal of Building Structures,2018,39(3):77-83.
[18]陈 鹏,王玉银,刘昌永,等.圆钢管混凝土轴压性能尺寸效应试验研究[J].建筑结构学报,2017,38(增1):249-257.
CHEN Peng,WANG Yuyin,LIU Changyong,et al.Experimental study on size effect of circular concrete-filled steel tubular columns subjected to axial compression[J].Journal of Building Structures,2017,38(S1):249-257.
[19]YAMAMOTO T,KAWAGUCHI J,MORINO S.Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns[J].Composite Construction in Steel and Concrete,2000,25:879-891.
[20]LI D,JIN L,DU X L,et al.Size effect tests of normal-strength and high-strength RC columns subjected to axial compressive loading[J].Engineering Structures,2016,109:43-60.
[21]TAO Z,HAN L H,WANG D Y.Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete[J].Thin-walled Structures,2008,46(10):1113-1128.
[22]DING F X,LU D R,BAI Y,et al.Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading[J].Thin-walled Structures,2016,98:443-453.
[23]钢管混凝土拱桥技术规范:GB 50923—2013[S].北京:中国计划出版社,2014.
Technical code for concrete-filled steel tube arch bridges:GB 50923—2013[S].Beijing:China Planning Press,2014.
[24]公路钢管混凝土拱桥设计规范:JTG/T D65-06-2015[S].北京:人民交通出版社,2015.
Specifications for design of highway concrete-filled steel tubular arch bridges:JTG/T D65-06-2015[S].Beijing:China Communications Press,2015.
[25]钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社,2014.
Technical code for concrete filled steel tubular structures:GB 50936—2014[S].Beijing:China Architecture & Building Press,2014.
[26]钢管混凝土结构技术规程:CECS 28:2012[S].北京:中国计划出版社,2012.
Technical specification for concrete-filled steel tubular structures:CECS 28:2012[S].Beijing:China Planning Press,2012.
[27]矩形钢管混凝土结构技术规程:CECS 159:2004[S].北京:中国计划出版社,2004.
Technical specification for structures with concrete-filled rectangular steel tube members:CECS 159:2004[S].Beijing:China Planning Press,2004.
[28]陈惠发,SALEEB A F.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
CHEN Huifa,SALEEB A F.Elasticity and plasticity[M].Beijing:China Architecture & Building Press,2004.
[29]MANDER J B,PRIESTLEY M J N,PARK R.Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering,1988,114(8):1804-1826.
[30]龙 刚.城市钢管混凝土拱桥设计与施工关键技术研究[D].西安:长安大学,2019.
LONG Gang.Key technique study on urban concrete-filled steel tubular arch bridge design and construction[D].Xi'an:Chang'an University,2019.

相似文献/References:

[1]刘荣桂,刘德鑫,延永东,等.CFRP筋复合型锚具锚固性能研究[J].建筑科学与工程学报,2013,30(02):9.
 LIU Rong-gui,LIU De-xin,YAN Yong-dong.[J].Journal of Architecture and Civil Engineering,2013,30(06):9.
[2].《建筑科学与工程学报》征稿简则[J].建筑科学与工程学报,2013,30(02):127.
[3]李加武,黄森华,王新.开口断面斜拉桥主梁动力特性的有限元简化计算[J].建筑科学与工程学报,2013,30(04):59.
 LI Jia-wu,HUANG Sen-hua,WANG Xin.Finite Element Simplified Computation for Dynamic Characteristics of Cable-stayed Bridge Girder with Opening Section[J].Journal of Architecture and Civil Engineering,2013,30(06):59.
[4]任 伟,盖轶婷,王 锦.混凝土自锚式悬索桥过程控制状态分析[J].建筑科学与工程学报,2014,31(03):45.
 REN Wei,GAI Yi-ting,WANG Jin.Analysis of Process Control State About Concrete Selfanchored Suspension Bridge[J].Journal of Architecture and Civil Engineering,2014,31(06):45.
[5]李加武,周 琴,黄森华.简支梁桥铅芯橡胶支座减震特性研究[J].建筑科学与工程学报,2014,31(03):124.
 LIU Xin-hua,LI Jia-wu,ZHOU Qin,et al.Research on Seismic Isolation Characteristics of LRB for Simply Supported Beam Bridge[J].Journal of Architecture and Civil Engineering,2014,31(06):124.
[6]韦建刚,黄 蕾,李佩元,等.旧空心板简支梁桥的连续化改造加固研究[J].建筑科学与工程学报,2014,31(04):103.
 WEI Jian-gang,HUANG Lei,LI Pei-yuan,et al.Research on Continuous Transformation and Reinforcement for Old Simply Supported Hollow Slab Bridge[J].Journal of Architecture and Civil Engineering,2014,31(06):103.
[7]周 帅,曾永平,杨国静,等.桥梁箱型吊杆涡振与驰振耦合振动的数值模拟[J].建筑科学与工程学报,2015,32(02):84.
 ZHOU Shuai,ZENG Yong-ping,YANG Guo-jing,et al.Numerical Simulation on Coupled Vibration of Vortex-induced Vibration and Galloping Vibration for Box Hangers of Bridges[J].Journal of Architecture and Civil Engineering,2015,32(06):84.
[8]赵士良,韩万水,鲁永飞,等.重载交通条件下装配式RC板桥抗裂性分析[J].建筑科学与工程学报,2015,32(04):73.
 ZHAO Shi-liang,HAN Wan-shui,LU Yong-fei,et al.Crack Resistance Analysis on Prefabricated RC Slab Bridge Under Heavy Traffic[J].Journal of Architecture and Civil Engineering,2015,32(06):73.
[9]贡金鑫,江力财,赵尚传,等.桥梁拉吊索用不锈钢钢丝腐蚀性能及斜拉索时变可靠度研究[J].建筑科学与工程学报,2015,32(05):8.
 GONG Jin-xin,JIANG Li-cai,ZHAO Shang-chuan,et al.Study on Corrosion Properties of Stainless Steel Wire for Cable Use and Time-variant Reliability of Stay Cable of Bridge[J].Journal of Architecture and Civil Engineering,2015,32(06):8.
[10]李立峰,刘守苗,吴文朋.氯离子侵蚀效应对RC桥墩抗震性能的影响[J].建筑科学与工程学报,2015,32(05):56.
 LI Li-feng,LIU Shou-miao,WU Wen-peng.Influence of Chloride Ion Corrosion on Seismic Performance of Reinforced Concrete Piers[J].Journal of Architecture and Civil Engineering,2015,32(06):56.

备注/Memo

备注/Memo:
收稿日期:2023-02-21
基金项目:国家自然科学基金项目(51978061,51508027); 陕西省高校科协青年人才托举计划项目(20180409)
作者简介:龙 刚(1982-),男,工学博士,正高级工程师,E-mail:82696098@qq.com。
通信作者:刘永健(1966-),男,工学博士,教授,博士生导师,E-mail:liuyongjian@chd.edu.cn。
更新日期/Last Update: 2023-12-01