|本期目录/Table of Contents|

[1]钟炜辉,段仕超,高迪,等.部分约束下组合梁柱子结构抗连续倒塌机理[J].建筑科学与工程学报,2022,39(03):45-54.[doi:10.19815/j.jace.2021.09111]
 ZHONG Wei-hui,DUAN Shi-chao,GAO Di,et al.Anti-progressive Collapse Mechanism of Composite Beam-column Substructure with Partial Boundary Constraints[J].Journal of Architecture and Civil Engineering,2022,39(03):45-54.[doi:10.19815/j.jace.2021.09111]
点击复制

部分约束下组合梁柱子结构抗连续倒塌机理(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年03期
页码:
45-54
栏目:
出版日期:
2022-05-30

文章信息/Info

Title:
Anti-progressive Collapse Mechanism of Composite Beam-column Substructure with Partial Boundary Constraints
文章编号:
1673-2049(2022)03-0045-10
作者:
钟炜辉1,2,段仕超1,高迪1,谭政1
(1. 西安建筑科技大学 土木工程学院,陕西 西安 710055; 2. 西安建筑科技大学 结构工程与抗震教育部重点实验室,陕西 西安 710055)
Author(s):
ZHONG Wei-hui1,2, DUAN Shi-chao1, GAO Di1, TAN Zheng1
(1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China; 2. Key Lab of Structural Engineering and Earthquake Resistance of Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China)
关键词:
连续倒塌 数值模拟 梁柱子结构 侧向刚度 边柱尺寸
Keywords:
progressive collapse numerical simulation beam-column substructure lateral stiffness size of side column
分类号:
TU398.9
DOI:
10.19815/j.jace.2021.09111
文献标志码:
A
摘要:
为研究部分约束钢框架组合梁柱子结构的抗连续倒塌机理,对其进行数值模拟研究。利用ABAQUS软件建立了1:3缩尺的部分边界约束组合梁柱子结构的精细化数值模型,模型计算结果与试验结果吻合较好,验证了有限元建模方法的正确性。在此基础上建立足尺模型,分析边界约束侧向刚度、边柱尺寸、边柱轴压比对部分边界约束下组合梁柱子结构的抗连续倒塌性能的影响。结果表明:当弹簧约束系数n<1时,边界约束侧向刚度对组合梁柱子结构的抗连续倒塌性能影响显著,增大侧向约束刚度可有效提高组合梁柱子结构的抗连续倒塌性能; 当弹簧约束系数n>1时,增大侧向约束刚度对组合子结构的抗连续倒塌性能影响较小; 边柱尺寸过大或过小均不利于组合梁柱子结构抗连续倒塌性能的发挥,当梁柱线刚度比处于0.6~1.1区间时,边柱尺寸越大,悬链线机制发挥越充分,组合梁柱子结构的抗连续倒塌性能越好; 边柱轴压比对不同机制抗力的占比影响不大,但会影响组合梁柱子结构的承载能力,当边柱轴压比取0.3时,组合梁柱子结构的抗连续倒塌性能发挥最佳。
Abstract:
In order to investigate the anti-progressive collapse mechanism of composite beam-column substructure with partial boundary constraints, numerical simulation was carried out. The refined numerical model of a 1:3 scaled partial boundary constrained composite beam-column substructure specimen was established based on the ABAQUS software. The model calculation results were in good agreement with the test results, which verified the correctness of the finite element modeling method. On the basis, a full-scale model was established to analyze the influence of the lateral stiffness of the boundary constraint, the size of the side column, and the axial compression ratio of the side column on the anti-progressive collapse performance of the composite beam-column substructure with partial peripheral constraints. The results show that the lateral stiffness of the boundary restraint has a significant influence on the anti-progressive collapse performance of the composite beam-column substructure when the spring restraint coefficient n<1 and the anti-progressive collapse performance of the substructure is effectively improved when increasing the lateral restraint stiffness of the beam-column substructure. The increase in the lateral restraint stiffness has little influence on the anti-progressive collapse performance of the composite beam-column substructure when the spring restraint coefficient n>1. Too large or too small side column size is not conducive to the performance of the anti-progressive collapse performance of the composite beam-column substructure. The larger the side column size, the better the anti-progressive collapse performance of the substructure and the catenary mechanism when the beam-column stiffness ratio is between 0.6-1.1. The side column axial compression ratio has little effect on the proportion of different mechanism resistance, but it can affect the bearing capacity of the composite beam-column substructure. The composite beam-column substructure exerts the best anti-progressive collapse performance when the side column axial compression ratio is 0.3.

参考文献/References:

[1] ELLINGWOOD B R.Mitigating Risk from Abnormal Loads and Progressive Collapse[J].Journal of Performance of Constructed Facilities,2006,20(4):315-323.
[2]ADAM J M,PARISI F,SAGASETA J,et al.Research and Practice on Progressive Collapse and Robustness of Building Structures in the 21st Century[J].Engineering Structures,2018,173:122-149.
[3]姜 健,吕大刚,陆新征,等.建筑结构抗连续性倒塌研究进展与发展趋势[J].建筑结构学报,2022,43(1):1-28.
JIANG Jian,LÜ Da-gang,LU Xin-zheng,et al.Research Progress and Development Trends on Progressive Collapse Resistance of Building Structures[J].Journal of Building Structures,2022,43(1):1-28.
[4]张望喜,曹亚栋.装配式混凝土框架结构防连续倒塌研究中的几个问题[J].建筑科学与工程学报,2017,34(5):101-112.
ZHANG Wang-xi,CAO Ya-dong.Several Problems in Research on Progressive Collapse of Precast Concrete Frame Structures[J].Journal of Architecture and Civil Engineering,2017,34(5):101-112.
[5]姚宇飞,师燕超,李忠献.爆炸荷载下钢筋混凝土框架结构连续倒塌分析方法比较[J].建筑科学与工程学报,2015,32(1):64-72.
YAO Yu-fei,SHI Yan-chao,LI Zhong-xian.Comparison of Progressive Collapse Analysis Methods for RC Frame Structures Under Blast Loads[J].Journal of Architecture and Civil Engineering,2015,32(1):64-72.
[6]YANG B,TAN K H.Experimental Tests of Different Types of Bolted Steel Beam-column Joints Under a Central-column-removal Scenario[J].Engineering Structures,2013,54:112-130.
[7]DINU F,MARGINEAN I,DUBINA D.Experimental Testing and Numerical Modelling of Steel Moment-frame Connections Under Column Loss[J].Engineering Structures,2017,151:861-878.
[8]ALRUBAIDI M,ELSANADEDY H,ABBAS H,et al.Investigation of Different Steel Intermediate Moment Frame Connections Under Column-loss Scenario[J].Thin-walled Structures,2020,154:106875.
[9]ZHONG W H,TAN Z,TIAN L M,et al.Collapse Resistance of Composite Beam-column Assemblies with Unequal Spans Under an Internal Column-removal Scenario[J].Engineering Structures,2020,206:110143.
[10]ZHONG W H,TAN Z,SONG X Y,et al.Anti-collapse Analysis of Unequal Span Steel Beam-column Substructure Considering the Composite Effect of Floor Slabs[J].Advanced Steel Construction,2019,15:377-385.
[11]王俊杰,王 伟,孙 昕.压型钢板组合梁中柱子结构的抗连续倒塌试验[J].工程力学,2017,34(增1):149-153,178.
WANG Jun-jie,WANG Wei,SUN Xin.Experimental Behavior of Composite Beam-column Joints with Steel Profiled Decking in a Middle-column-removal Scenario[J].Engineering Mechanics,2017,34(S1):149-153,178.
[12]WANG W,WANG J J,SUN X,et al.Slab Effect of Composite Subassemblies Under a Column Removal Scenario[J].Journal of Constructional Steel Research,2017,129:141-155.
[13]杜 轲,滕 楠,燕 登,等.楼板对RC空间框架结构抗连续倒塌性能影响试验研究[J].土木工程学报,2019,52(6):14-23.
DU Ke,TENG Nan,YAN Deng,et al.Experimental Study on the Effect of Floor Slab on the Progressive Collapse Resistance of RC Spatial Frame Structure[J].China Civil Engineering Journal,2019,52(6):14-23.
[14]易伟建,黄义谋.RC框架子结构连续倒塌动力响应分析[J].建筑科学与工程学报,2020,37(3):1-9.
YI Wei-jian,HUANG Yi-mou.Analysis of Dynamic Response of Progressive Collapse for RC Frame Substructure[J].Journal of Architecture and Civil Engineering,2020,37(3):1-9.
[15]罗维刚,黑晓丹,刘纪斌,等.考虑楼板影响的RC框架结构连续性倒塌动力响应分析[J].建筑科学与工程学报,2018,35(4):113-119.
LUO Wei-gang,HEI Xiao-dan,LIU Ji-bin,et al.Dynamic Response Analysis on Progressive Collapse of RC Frame Considering Contribution of Slab[J].Journal of Architecture and Civil Engineering,2018,35(4):113-119.
[16]黄 华,黄 敏,郭洁娜,等.RC框架结构连续倒塌影响因素与破坏机制的研究现状[J].建筑科学与工程学报,2018,35(6):29-40.
HUANG Hua,HUANG Min,GUO Jie-na,et al.Research Status on Influencing Factors and Failure Mechanism for RC Frame Structural Progressive Collapse[J].Journal of Architecture and Civil Engineering,2018,35(6):29-40.
[17]LEW H S,BAO Y H,SADEK F,et al.An Experimental and Computational Study of Reinforced Concrete Assemblies Under a Column Removal Scenario[R].Gaithersburg:National Institute of Standards and Technology,2011.
[18]YU J,TAN K H.Structural Behavior of Reinforced Concrete Frames Subjected to Progressive Collapse[J].ACI Structural Journal,2017,114(1):63-74.
[19]KANG S B.Structural Behaviour of Precast Concrete Frames Subject to Column Removal Scenarios[D].Singapore:Nanyang Technological University,2015.
[20]乔惠云,郭壮壮,陈 誉,等.平面钢框架在撞击荷载作用下的抗连续倒塌分析[J].振动与冲击,2022,41(4):176-184.
QIAO Hui-yun,GUO Zhuang-zhuang,CHEN Yu,et al.Anti-progressive Collapse Analysis for Plane Steel Frame Under Impact Load[J].Journal of Vibration and Shock,2022,41(4):176-184.
[21]QIAN K,LAN X,LI Z,et al.Progressive Collapse Resistance of Two-storey Seismic Configured Steel Sub-frames Using Welded Connections[J].Journal of Constructional Steel Research,2020,170:106117.
[22]张惊宙,李国强,冯 然,等.考虑边柱失效位置和根数影响的钢框架结构抗倒塌性能研究[J].土木工程学报,2021,54(8):67-74.
ZHANG Jing-zhou,LI Guo-qiang,FENG Ran,et al.Collapse Resistance of Steel framed-structure Considering the Effects of Failure Location and Number of Edge Columns[J].China Civil Engineering Journal,2021,54(8):67-74.
[23]ZHONG W H,GAO D,TAN Z.Experimental Study on Anti-collapse Performance of Beam-column Assembly Considering Surrounding Constraints[J].IOP Conference Series:Earth and Environmental Science,2021,643(1):012163.
[24]钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2017.
Standard for Design of Steel Structures:GB 50017—2017[S].Beijing:China Architecture & Building Press,2017.
[25]IZZUDDIN B A,VLASSIS A G,ELGHAZOULI A Y,et al.Progressive Collapse of Multi-storey Buildings Due to Sudden Column Loss — Part I:Simplified Assessment Framework[J].Engineering Structures,2008,30(5):1308-1318.
[26]谭 政,钟炜辉,段仕超,等.不同梁线刚度情形下组合梁柱子结构抗倒塌性能研究[J].振动与冲击,2021,40(10):57-66.
TAN Zheng,ZHONG Wei-hui,DUAN Shi-chao,et al.Research on Anti-collapse Performance of Composite Beam-column Substructures with Different Beam Line Stiffness[J].Journal of Vibration and Shock,2021,40(10):57-66.
[27]YU H L,JEONG D Y.Application of a Stress Triaxiality Dependent Fracture Criterion in the Finite Element Analysis of Unnotched Charpy Specimens[J].Theoretical and Applied Fracture Mechanics,2010,54(1):54-62.
[28]TAN Z,ZHONG W H,TIAN L M,et al.Quantitative Assessment of Resistant Contributions of Two-bay Beams with Unequal Spans[J].Engineering Structures,2021,242:112445.
[29]混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011.
Code for Design of Concrete Structures:GB 50010—2010[S].Beijing:China Architecture & Building Press,2011.
[30]MENG B,ZHONG W H,HAO J P,et al.Anti-progressive Collapse Performance Analysis of Composite Frame with Openings on Beam Web[J].Journal of Constructional Steel Research,2020,173:106251.

相似文献/References:

[1]陈适才,田相凯,张 磊,等.动力转换分析方法的火灾引起钢结构连续倒塌性能研究[J].建筑科学与工程学报,2014,31(02):65.
 [J].Journal of Architecture and Civil Engineering,2014,31(03):65.
[2]黄 华,刘伯权,张彬彬,等.钢筋混凝土抗震框架连续倒塌行为分析[J].建筑科学与工程学报,2014,31(04):35.
 HUANG Hua,LIU Bo-quan,ZHANG Bin-bin,et al.Analysis of Progressive Collapse Behavior of Earthquakeresistant Reinforced Concrete Frame[J].Journal of Architecture and Civil Engineering,2014,31(03):35.
[3]姚宇飞,师燕超,李忠献.爆炸荷载下钢筋混凝土框架结构连续倒塌分析方法比较[J].建筑科学与工程学报,2015,32(01):64.
 YAO Yu-fei,SHI Yan-chao,LI Zhong-xian.Comparison of Progressive Collapse Analysis Methods for RC Frame Structures Under Blast Loads[J].Journal of Architecture and Civil Engineering,2015,32(03):64.
[4]朱丽华,王宁娟,戴 军.基于客观赋权法的构件重要性评估[J].建筑科学与工程学报,2015,32(04):46.
 ZHU Li-hua,WANG Ning-juan,DAI Jun.Evaluation on Element Importance Based on Objective Weighting Method[J].Journal of Architecture and Civil Engineering,2015,32(03):46.
[5]田 力,范其华.多层框架结构在其地下室内部爆炸冲击下的连续倒塌机理研究[J].建筑科学与工程学报,2016,33(01):46.
 TIAN Li,FAN Qi-hua.Research on Progressive Collapse Mechanism of Multi-layered Frame Structure Under Blast Impact in Internal of Basement[J].Journal of Architecture and Civil Engineering,2016,33(03):46.
[6]张望喜,曹亚栋.装配式混凝土框架结构防连续倒塌研究中的几个问题[J].建筑科学与工程学报,2017,34(05):101.
 ZHANG Wang-xi,CAO Ya-dong.Several Problems in Research on Progressive Collapse of Precast Concrete Frame Structures[J].Journal of Architecture and Civil Engineering,2017,34(03):101.
[7]马志林,史庆轩,王伟.钢筋混凝土联肢剪力墙弹塑性分析[J].建筑科学与工程学报,2010,27(01):60.
 MA Zhi-lin,SHI Qing-xuan,WANG Wei.Elasto-plastic Analysis of Reinforced Concrete Coupled Shear Walls[J].Journal of Architecture and Civil Engineering,2010,27(03):60.
[8]瞿海雁,李国强,孙建运,等.侧向冲击作用下圆钢管混凝土构件的数值模拟分析[J].建筑科学与工程学报,2010,27(01):89.
 QU Hai-yan,LI Guo-qiang,SUN Jian-yun,et al.Numerical Simulation Analysis of Circular Concrete-filled Steel Tube Specimen Under Lateral Impact[J].Journal of Architecture and Civil Engineering,2010,27(03):89.
[9]侯刚,童乐为.较高含碳量冷弯方钢管焊接应力-应变场的数值模拟[J].建筑科学与工程学报,2010,27(02):114.
 HOU Gang,TONG Le-wei.Numerical Simulation of Welding Stress-strain Field for Cold-formed Square Steel Tube with Higher Carbon Content[J].Journal of Architecture and Civil Engineering,2010,27(03):114.
[10]白桦,李加武,夏勇.低雷诺数圆柱绕流数值模拟及控制措施[J].建筑科学与工程学报,2010,27(04):39.
 BAI Hua,LI Jia-wu,XIA Yong.Numerical Simulation and Control Measures of Flow Around Circular Cylinders at Low Reynolds Number[J].Journal of Architecture and Civil Engineering,2010,27(03):39.
[11]钱凯,李易.混凝土结构抗连续倒塌研究综述[J].建筑科学与工程学报,2022,39(03):1.[doi:10.19815/j.jace.2021.12123]
 QIAN Kai,LI Yi.Review of Study on Progressive Collapse Resistance of RC Structures[J].Journal of Architecture and Civil Engineering,2022,39(03):1.[doi:10.19815/j.jace.2021.12123]

备注/Memo

备注/Memo:
收稿日期:2021-09-08
基金项目:陕西省教育厅重点科学研究计划项目(20JY033); 陕西省教育厅专项科研计划项目(20JK0713)
作者简介:钟炜辉(1980-),男,广东佛山人,教授,博士研究生导师,工学博士,E-mail:zhongweihui1980@163.com。
更新日期/Last Update: 2022-05-30