|本期目录/Table of Contents|

[1]尹亚运,刘川琦,李书进,等.纤维橡胶砂浆的力学性能与砌体轴压试验[J].建筑科学与工程学报,2023,40(02):19-25.[doi:10.19815/j.jace.2021.10072]
 YIN Yayun,LIU Chuanqi,LI Shujin,et al.Mechanical properties of fiber rubber mortar and axial compression test of masonry[J].Journal of Architecture and Civil Engineering,2023,40(02):19-25.[doi:10.19815/j.jace.2021.10072]
点击复制

纤维橡胶砂浆的力学性能与砌体轴压试验(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年02期
页码:
19-25
栏目:
建筑材料
出版日期:
2023-03-30

文章信息/Info

Title:
Mechanical properties of fiber rubber mortar and axial compression test of masonry
文章编号:
1673-2049(2023)02-0019-07
作者:
尹亚运1,刘川琦1,李书进1,毛 羚1,王振洋2
(1. 武汉理工大学 土木工程与建筑学院,湖北 武汉 430070; 2. 武汉地铁集团有限公司,湖北 武汉 430030)
Author(s):
YIN Yayun1, LIU Chuanqi1, LI Shujin1, MAO Ling1, WANG Zhenyang2
(1.School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China; 2. Wuhan Metro Group Co., Ltd, Wuhan 430030, Hubei, China)
关键词:
橡胶砂浆 力学性能 轴心受压 纤维 砌体
Keywords:
rubber mortar mechanical property axial compression fiber masonry
分类号:
TU528.58
DOI:
10.19815/j.jace.2021.10072
文献标志码:
A
摘要:
为提高橡胶砂浆的力学性能和适用性,通过单掺聚乙烯醇(PVA)纤维或钢纤维、复掺PVA-钢纤维对橡胶砂浆进行改性,探讨其对超声波传播速度、抗折强度和抗压强度的影响。将普通水泥砂浆、20%橡胶砂浆、复掺PVA-钢纤维橡胶砂浆分别与环保压缩砖结合制作砌体,通过试验研究轴心抗压强度和弹性模量。结果表明:掺入PVA纤维或复掺PVA-钢纤维降低了超声波在橡胶砂浆中的传播速度; 掺入PVA纤维或钢纤维提高了橡胶砂浆的抗折强度; 复掺一定量的PVA纤维和钢纤维能有效提高橡胶砂浆的抗压强度; 20%橡胶砂浆的抗压强度比普通水泥砂浆降低了46%,对应砌体的破坏荷载降低了12.8%; 复掺PVA-钢纤维橡胶砂浆的抗压强度比20%橡胶砂浆提高了14.9%,对应砌体的开裂荷载和破坏荷载分别提高了63.4%和4.5%; 掺入适量PVA纤维和钢纤维能改善橡胶砂浆的强度明显低于普通水泥砂浆的缺点,将复掺PVA-钢纤维橡胶砂浆应用于砌体工程能改善结构的隔音性,延缓试件的开裂,提高橡胶砂浆砌体的抗压强度。
Abstract:
In order to improve the mechanical properties and applicability of rubber mortar, the rubber mortar was modified by single-doped polyvinyl alcohol(PVA)fiber or steel fiber, and PVA-steel fiber, then the influences on ultrasonic propagation speed, flexural strength, and compressive strength were discussed. Ordinary cement mortar, 20% rubber mortar and PVA-steel fiber rubber mortar were combined with environmentally friendly compressed bricks to make masonry, and the axial compressive strength and elastic modulus were studied. The results show that adding PVA fiber or PVA-steel fiber reduces the propagation speed of ultrasonic waves in rubber mortar. Adding PVA fiber or steel fiber improves the flexural strength of rubber mortar. A certain amount of PVA fiber and steel fiber can effectively improve the compressive strength of rubber mortar. The compressive strength of 20% rubber mortar is 46% lower than that of ordinary cement mortar, and the failure load of masonry is reduced by 12.8%. The compressive strength of PVA-steel fiber rubber mortar is 14.9% higher than that of 20% rubber mortar, and the cracking load and failure load of the corresponding masonry are increased by 63.4% and 4.5% respectively. Adding a proper amount of PVA fiber and steel fiber can improve the strength of rubber mortar, which is obviously lower than ordinary cement mortar. Applying compounded PVA-steel fiber rubber mortar to masonry engineering can improve the sound insulation of the structure, delay the cracking of specimen, and improve the compressive strength of the rubber mortar masonry.

参考文献/References:

[1] HANNAWI K,PRINCE W,BERNARD S K.Strain capacity and cracking resistance improvement in mortars by adding plastic particles[J].Journal of Materials in Civil Engineering,2013,25(11):1602-1610.
[2]LI Y,DONG J X,ZHANG S,et al.Analysis of crack resistance for hybrid fiber mortar[J].Advanced Materials Research,2013,779-780:222-225.
[3]PEDRO D,DE BRITO J,VEIGA R.Mortars made with fine granulate from shredded tires[J].Journal of Materials in Civil Engineering,2013,25(4):519-529.
[4]TURKI M,BRETAGNE E,ROUIS M J,et al.Microstructure,physical and mechanical properties of mortar-rubber aggregates mixtures[J].Construction and Building Materials,2009,23(7):2715-2722.
[5]NA O,XI Y P.Mechanical and durability properties of insulation mortar with rubber powder from waste tires[J].Journal of Material Cycles and Waste Management,2017,19:763-773.
[6]TURATSINZE A,BONNET S,GRANJU J L.Mechanical characterisation of cement-based mortar incorporating rubber aggregates from recycled worn tyres[J].Building and Environment,2005,40(2):221-226.
[7]谢建和,李自坚,孙明炜.硅粉对纤维橡胶再生混凝土抗压性能影响试验[J].建筑科学与工程学报,2016,33(3):72-77.
XIE Jianhe,LI Zijian,SUN Mingwei.Experiment about influence of silica fume on compressive performance of fiber reinforced rubber recycled concrete[J].Journal of Architecture and Civil Engineering,2016,33(3):72-77.
[8]刘 喜,吴 涛,杨 雪,等.纤维增韧高强轻骨料混凝土力学性能与微观结构[J].建筑材料学报,2019,22(5):700-706,713.
LIU Xi,WU Tao,YANG Xue,et al.Mechanical properties and microstructure of fiber reinforced high-strength lightweight aggregate concrete[J].Journal of Building Materials,2019,22(5):700-706,713.
[9]WANG J Q,DAI Q L,SI R Z,et al.Investigation of properties and performances of polyvinyl alcohol(PVA)fiber-reinforced rubber concrete[J].Construction and Building Materials,2018,193:631-642.
[10]何 亮,黄 勇,冯 畅,等.橡胶混凝土性能及胶粉表面改性研究进展[J].硅酸盐通报,2018,37(8):2483-2489,2496.
HE Liang,HUANG Yong,FENG Chang,et al.Research progress on properties of rubberized concrete and the surface modification of crumb rubber[J].Bulletin of the Chinese Ceramic Society,2018,37(8):2483-2489,2496.
[11]MOHAMMADI I,KHABBAZ H,VESSALAS K.Enhancing mechanical performance of rubberised concrete pavements with sodium hydroxide treatment[J].Materials and Structures,2016,49:813-827.
[12]史 巍,张 雄,陆沈磊.橡胶粉水泥砂浆隔声功能研究[J].建筑材料学报,2005,8(5):553-557.
SHI Wei,ZHANG Xiong,LU Shenlei.Sound insulation function of cement mortar modified with crumb rubber[J].Journal of Building Materials,2005,8(5):553-557.
[13]CORREDOR-BEDOYA A C,ZOPPI R A,SERPA A L.Composites of scrap tire rubber particles and adhesive mortar - noise insulation potential[J].Cement and Concrete Composites,2017,82:45-66.
[14]ELDIN N N,SENOUCI A B.Observations on rubberized concrete behavior[J].Cement,Concrete and Aggregates,1993,15(3):74-84.
[15]FAN J,LI G Y,DENG S J,et al.Mechanical properties and microstructure of polyvinyl alcohol(PVA)modified cement mortar[J].Applied Sciences,2019,9(11):2178.
[16]HAQUE M A,CHEN B,AHMAD M R,et al.Evaluating the physical and strength properties of fibre reinforced magnesium phosphate cement mortar considering mass loss[J].Construction and Building Materials,2019,217:427-440.
[17]石建光,郑雪锋,林树枝,等.灰缝厚度及水泥砂浆抹面对历史建筑砌体结构性能的影响[J].建筑科学与工程学报,2020,37(1):67-74.
SHI Jianguang,ZHENG Xuefeng,LIN Shuzhi,et al.Influence of mortar thickness and cement mortar surface strengthening on behavior of masonry structure in historical buildings[J].Journal of Architecture and Civil Engineering,2020,37(1):67-74.
[18]王凤池,丁军胜,刘凤起,等.橡胶混凝土砖砌体力学性能试验[J].沈阳建筑大学学报(自然科学版),2013,29(1):50-55.
WANG Fengchi,DING Junsheng,LIU Fengqi,et al.The experiment of basic mechanical properties of CRB masonry[J].Journal of Shenyang Jianzhu University(Natural Science),2013,29(1):50-55.

相似文献/References:

[1]李俊华,于长海,唐跃锋,等.CFRP布加固火灾后钢筋混凝土柱的试验研究[J].建筑科学与工程学报,2011,28(04):48.
 LI Jun-hua,YU Chang-hai,TANG Yue-feng,et al.Experimental Research on Rehabilitation with CFRP Sheets for ReinforcedConcrete Columns After Exposure to Fire[J].Journal of Architecture and Civil Engineering,2011,28(02):48.
[2]孙小凯,刁波,叶英华,等.超高性能混杂钢纤维混凝土力学性能试验[J].建筑科学与工程学报,2012,29(02):55.
 SUN Xiao-kai,DIAO Bo,YE Ying-hua,et al.Experiment on Mechanical Properties of Ultra-high Performance Reinforced Concrete with Hybrid-fiber[J].Journal of Architecture and Civil Engineering,2012,29(02):55.
[3]郭猛,徐健,徐福泉,等.加气混凝土砌块墙力学性能研究现状与展望[J].建筑科学与工程学报,2012,29(04):44.
 GUO Meng,XU Jian,XU Fu-quan,et al.Research Status and Prospect in Mechanical Properties of Aerated Concrete Block Wall[J].Journal of Architecture and Civil Engineering,2012,29(02):44.
[4]于长亮,郑宏,袁晓洒,等.带侧板钢节点力学性能研究[J].建筑科学与工程学报,2012,29(04):74.
 YU Chang-liang,ZHENG Hong,YUAN Xiao-sa,et al.Mechanical Behavior of Moment Resisting Connection with Side Plate Under Cyclic Loading[J].Journal of Architecture and Civil Engineering,2012,29(02):74.
[5]祝金鹏,李术才,刘宪波,等.冻融环境下混凝土力学性能退化模型[J].建筑科学与工程学报,2009,26(01):62.
 ZHU Jin-peng,LI Shu-cai,LIU Xian-bo,et al.Mechanical Property Deterioration Model for Concrete in Environment with Freezing-thawing[J].Journal of Architecture and Civil Engineering,2009,26(02):62.
[6]杜修力,张建伟,符佳,等.钢筋混凝土构件的尺寸效应研究进展及展望[J].建筑科学与工程学报,2009,26(03):14.
 DU Xiu-li,ZHANG Jian-wei,FU Jia,et al.Research Progress and Prospect of Size Effect on Reinforced Concrete Members[J].Journal of Architecture and Civil Engineering,2009,26(02):14.
[7]胡波,王建国.FRP约束混凝土柱的研究现状与展望[J].建筑科学与工程学报,2009,26(03):96.
 HU Bo,WANG Jian-guo.Research Status and Prospects of FRP-confined Concrete Columns[J].Journal of Architecture and Civil Engineering,2009,26(02):96.
[8]高向玲,李杰.添加不同纤维的高性能混凝土力学性能试验[J].建筑科学与工程学报,2008,25(01):43.
 GAO Xiang-ling,LI Jie.Experiment on Mechanical Properties of High-performance Concrete with Different Fibers[J].Journal of Architecture and Civil Engineering,2008,25(02):43.
[9]吴智敏,郭夏,魏华.纤维增强复合材料加固混凝土柱的研究进展[J].建筑科学与工程学报,2008,25(02):24.
 WU Zhi-min,GUO Xia,WEI Hua.Research Advances in Fiber Reinforced Polymer Retrofitting Concrete Columns[J].Journal of Architecture and Civil Engineering,2008,25(02):24.
[10]委旭,史庆轩.钢筋混凝土双肢剪力墙非线性静力有限元分析[J].建筑科学与工程学报,2008,25(04):53.
 WEI Xu,SHI Qing-xuan.Nonlinear Static Finite Element Analysis of Reinforced Concrete Coupled Shear Walls[J].Journal of Architecture and Civil Engineering,2008,25(02):53.

备注/Memo

备注/Memo:
收稿日期:2021-10-22
基金项目:国家自然科学基金项目(51808419)
作者简介:尹亚运(1990-),女,实验师,E-mail:yinyy@whut.edu.cn。
更新日期/Last Update: 2023-03-20